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1. INTRODUCTION 

1.1. Background  

RF energy harvesting is an idea whose time has come. Victor Hugo once remarked: “You can 
resist an invading army; but you cannot resist an idea whose time has come.” Today there are 
over 5 billion cell-phones (there are 7 billion people), 44,000 radio stations, thousands of TV 
stations, and countless home Wi-Fi system irradiating RF energy into the atmosphere. Before 
1885 when Marconi made his first radio, anthropogenic RF did not exist in our environment. All 
anthropogenic RF energy is generated from electrical energy what in turn is generated by fossil 
fuels that in turn produces CO2 resulting historical global warming. This is a proof of concept 
project to show that ambient RF can be harvested, stored, and reused. Figure 1 is a 2002 map 
of commonly known radio towers in the United States by Meuser plotting 20,455 cell; 39,730 
pagers; 241,258 microwave; 1,714 television; 4,789 AM; 6,014 FM; and 589,300 private tower 
locations. 

       

Figure 1. Meuser's mapping of radio towers in the US, potential sources of RF energy. 

This project addresses needs felt across many sectors of industry.  As the demand for energy 
increases, the need for energy efficiency grows in stride.  Modern microcontrollers can operate 
on less than 200 micro-amps of current,  and this is already considered “ultra low” current.  
Despite the already “ultra low” label, the bar continues to be lowered every year.  How low 
power consumption can go will be determined by future hands, but the power supply that can 
run these super-ultra-low consumption devices is already at our fingertips.   

We are aware that harvestable ambient RF energy is a full order of magnitude below what can 
be harvested from ambient wind and solar sources.  However, this does not remove the need 
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for RF harvesting research and development efforts because solar and wind energy have 
various physical and time limitations.  RF energy, on the other hand, is pervasive and nearly 
unstoppable.  Behind walls, in still or windy air, in sunshine or dark, underground or 
underwater, RF energy is capable and available. 

This is a proof of concept project to demonstrate that RF energy between from the AM radio 
band region of the spectrum can be collected by an antenna, rectified and multiplied by a 
Villard voltage multiplier, stored in a super capacitor, and used to power an microprocessor 
application. This report describes the  antenna, the Villard voltage multiplier, the super 
capacitor, and a low power embedded microprocessor application used to for this feasibility 
demonstration. 

1.2. Technical Background 

The amount of RF energy available to harvest from a radio tower, power density Pd, is 
dependent upon the power being emitted P from the RF source, the gain - directionality of the 
antenna G, and the distance from the antenna r from the transmitter, as shown in equation 1. 

 Pd =  PG/(4πr^2 ) 

The Power density at the University of Cincinnati campus was calculated for 10 AM radio 
stations, 36 FM stations, and 22 TV stations found within 50 km of the campus. In addition, the 
power density was calculated from 780 cell towers within 4.8 km. Each station’s geographic 
coordinates and transmitting power was obtained from FCC databases [1],[2], and [3]. The 
results were sorted and the top 33 stations were plotted in Table 1. 

 

Table 1. Top 30 strongest radio stations near UC campus 

RF source Type kW Pw Km to OCAS μW/cm2 at 
OCAS 

MHz 

WCPO-TV TV 880 1.25 45 519 
WLWT TV 1000 3.18 8 597 

WBQC-LP TV 150 1.25 8 501 
WOTH-CA TV 140 1.25 7 615 

WCET TV 400 3.18 3 591 
WPKF556 CELL 0.5 0.13 2 463 
WBQC-LP TV 39.7 1.25 2 537 
WNLC568 CELL 0.5 0.14 2 463 
WNVN408 CELL 0.5 0.14 2 463 
KNKL832 CELL 0.5 0.14 2 931 
KNNU922 CELL 0.5 0.18 1 462 
KNBL786 CELL 0.5 0.18 1 462 
WSA736 CELL 0.5 0.18 1 461 
WSS280 CELL 0.5 0.18 1 461 

KNAD373 CELL 0.5 0.18 1 461 
WPMX504 CELL 0.5 0.18 1 452 

KKY370 CELL 0.5 0.18 1 462 
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KNBU559 CELL 0.5 0.18 1 461 
WVXU FM 26 1.29 1 92 
WPTO TV 400 5.42 1 555 

WNSY613 CELL 0.5 0.19 1 308 
WNVD938 CELL 0.5 0.19 1 158 
WPYE541 CELL 0.5 0.19 1 152 

WPMV941 CELL 0.5 0.19 1 929 
KQD599 CELL 0.5 0.19 1 152 

WPYM345 CELL 0.5 0.19 1 152 
WGUC FM 18.5 1.26 0.9 91 

WOTH-LD TV 15 1.25 0.8 507 
WBQC-LD TV 15 1.25 0.8 669 
WUBE-FM FM 14.5 1.26 0.7 105 
WXIX-TV TV 227 5.42 0.6 561 

WOFX-FM FM 16 1.58 0.5 93 
WNNF FM 16 1.58 0.5 94 

 

 

While it appears that TV stations would have provided the strongest source of RF for this 
project coming from megawatt transmitting towers, AM stations were chosen because we did 
not have access to VHF simulation software or instrumentations. So the project considered an 
AM stations as a source of ambient RF, 0.35 µW/cm2 from WDBZ one km away (not the top 30 
Table I), in order to work in HF region. We also conducted field studies 3 miles for a 50 kW 
station, WLW, 700 kHz. 

The law of conservation of energy, first formulated in the nineteenth century, is a law of 
physics. It states that the total amount of energy in an isolated system remains constant over 
time. Thus, energy is neither created nor destroyed but changes form. RF is just one form of 
energy. Most RF energy is generated from electrical energy that in turn is generated from fossil 
fuel chemical energy. These fossil fuels are limited natural resources. Most RF energy is wasted 
in that it is either released into outer space or absorbed into the environment and converted to 
heat. Only a small percentage of RF reaches its intended purpose. This project proves the 
concept that RF energy can be captured, converted to electrical energy, stored, and reused 

2. SOLUTION-METHOD 

2.1. The Antenna 

2.1.1. A heuristic introduction 

Considering maximum effective 
aperture as the desired setpoint for 
our antenna selection, the ideal 
candidate antenna for the medium 
wave AM broadcast band would 

Figure 2:  3 Wavelengths at 700KHz 
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have been without a doubt the longwave antenna.  The longwave antenna, as its name 
indicates, is called a “longwave” antenna because the wire defining its dimensions unwinds into 
a full wavelength.  This would not be a problem at higher frequencies like 2.4 GHz where the 
wavelength is a scant .125 meters, but at medium frequencies like 500KHz, 700KHz, or 900KHz, 
it is not a simple task.  A true longwave antenna for a radiated electromagnetic wave varying in 
time at 700,000 cycles per second, for example, would need to be approximately 430 meters 
long.  This certainly would give us a large physical aperture, and coupled with even mediocre 
aperture efficiency, would easily give us the highest effective aperture for our desired medium 
frequency bandwidth.   

The parameters of this project defined a transducer (an antenna is a transducer since it 
converts time varying electric currents to and from radiated electromagnetic waves) that 
operated at 700,000Hz, was mobile enough to transport between the lab and field, affordable 
within the confines of a senior design project, and provided the best effective antenna 
aperture.  Electrical aperture (W/m2) is the amount of power that can be captured from the 
power density of a plane wave, and delivered to a load between the antenna’s terminals.  The 
longwave antenna was a clear winner in the antenna aperture department, but considering we 
were not even 100% certain that our RF Harvesting approach was valid, a 430 meter antenna 
was clearly not within our limitations.  Despite our desire to have the greatest effective antenna 
aperture imaginable, the space and cost implications of the longwave antenna lead us to our 
next best transducer option, the spiral wound air loop antenna.   

Cost, size, and immobility are some of the major disadvantages of a true longwave antenna.  
The spiral loop antenna, though sizeable in its own right, does not need to be a full wavelength 
long.  The spiral loop air core antenna can operate as a relatively high aperture antenna at 
approximately 1/10th of a wavelength or less.  This instantly reduced the proposed footprint of 
our project to 1/10th the size of the longwave antenna, and also provided us a situation where 
we could test our project in the lab as well as the field.  Although the construction still called for 
more than 40 meters of wire, the spiral shape made the antenna compact enough for our 
needs.  The loop antenna could have been constructed using an edge wound design.  Whereas 
the loops on a spiral wound antenna get progressively smaller, the loops of an edgewise 
antenna are all the same size.  The major advantage of the edge wound antenna would have 
been the fact that most of the equations available are built around this type of antenna.  These 
equations are at best only approximations of reality, but they are still very helpful to have 
during the design process.  The UMR-EMC Lab Formula is an example of this.  We tried to port 
the desire parameters of the spiral wound antenna into the confines of the UMR-EMC formula, 
but did not get dependable results.   In retrospect, the availability of these types of equations 
should have tipped the balance in favor of an edge wound antenna.  Thus is the power of 
retrospect.    

The spiral loop antenna is considered a highly directional antenna.  This high directivity means 
that the antenna reception is much more focused than an isotropic antenna.  An example of a 
low directivity antenna would be a cell phone antenna because a signal from any direction can 
be received.  The spiral loop does not work like this, and must be positioned carefully to take 
advantage of the antenna’s areas of maximum gain.  For the spiral wound antenna, the signals 
received at the antenna’s sides are received, while signals coming in off the sides are greatly 
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attenuated.  I will attempt to explain this better later, but for now knowledge that the spiral 
antenna has high directivity will suffice.  The longwire antenna is also a high directivity antenna, 
but the compact size of the spiral loop allows for it to be repositioned easily to manipulate the 
nodes and nulls.  With this in mind, early in the design process we knew that the antenna would 
need to be mounted to a stand that had full alt azimuth rotational ability in order to maximize 
its figure 8 reception pattern.   

One of the main advantages of the spiral loop antenna (using the longwave antenna as our 
reference frame) is that it can comfortably fit inside the trunk of a normal sized car.  Our 
primary goal was to prove the concept of RF Harvesting, so we knew that we would be required 
to spend many hours tied to the University laboratory room operating under controlled 
conditions.  We could not deny, no matter how hard we tried, that we wanted to get the 
harvester working in the field.  From day one of the project it was clear to us that we wanted to 
design our antenna so that we could perform field tests.  The ability to transport the antenna 
from the lab to field, from the lab to each of our homes, enabled the prospect of field testing. 
This was made feasible by the spiral loop antenna. 

2.1.2. Early calculations 

The designer of the antenna must 
determine the size of the loop.  The 
amount of gain you can get from a 
loop antenna is dependent on the size 
of the loop.  A larger area translates 
into larger (directional) gain.  At over 
40 meters, our spiral antenna design 
would still be considered a small loop 
antenna because it is less than 1/10th 
of a wavelength.  Smaller loops can be 
built but most certainly would require 
an amplifier at the antenna terminals 
in order to be effective.  An amplifier 
would have nulled the purpose of 
harvesting RF energy, so all of the 
smallest loop options were removed 

from the table.  An equation that we used early in the design process,   
             

 
, 

relates the effect of the antenna’s area to the voltage produced at the terminals of the 
antenna.  This equation was intended for an edge wound air loop antenna, but it is still effective 
for explaining the principles involved with a spiral wound loop.  A is the area of the loop, N is 
the number of turns of wire in the loop,   is the strength of the signal in volts per meter (V/m), 

  is the angle of arrival of the signal, Q is the loaded Q of the antenna when the air capacitor is 
added to the circuit, and   is, of course, the wavelength of the electromagnetic wave.  Since 
area is in the numerator of this equation, we wanted to get it as close to 1m as possible (of 
course 2,3,or 4 meters would have been better but would have reduced the portability factor).  
However, increasing the area of the loop has a tradeoff in the numerator.  N, the number of 

       Figure 3:  10 Volt Peaks we Observed at our 
Antenna Terminals 
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turns, is reduced as the area of loop expands.  We estimated that a 1 meter loop would require 
approximately 20 loops of wire.  An electric field strength of 2V/m, with an antenna Q of 90, 
and an angle of 0  to the transmitting antenna would give us approximately 50 volts at the 
output of our loop.  Knowing that this was at best an approximation of reality, we were still 
encouraged by the calculations.  Theoretically we could build an antenna at 700KHz that would 
produce more than enough voltage at its output terminals to charge a supercapacitor to a 
working voltage. 

2.1.3. Construction of receiving antenna 

The spiral loop air core antenna (again using the 
longwave antenna as our reference frame) can be 
relatively easily and cheaply constructed for medium 
frequency applications.  The tools list was modest and 
consisted of a drill, a saw, approximately 50 meters of 
18 to 24 gauge wire (AWS), some wood glue, and an 
alt azimuth capable stand.  We wanted to make a 
quick and dirty prototype of our antenna.  The short 
materials list was a definite plus since the addition of 
the prototype would cause us to construct the 
antenna at least 2 times.  

The first spiral loop antenna we built was made with 

18 gauge stranded bare copper wire.  Early research 

revealed that performance did not depend on whether the antenna was wound with single 
strand or multiple strand wire, insulated or bare, 18 gauge or 22 gauge.  We felt strongly that 
any combination of these characteristics would not have a noticeable impact on the effective 
aperture of our antenna.   

Researching one characteristic of the wire did reveal a performance dependent material 
component.  The only copper wire that we found to be readily available was stranded copper 
wire.  We knew that stranded wire would not affect our design, but we thought a single strand 
of wire would be easier to work with, as well as make our overall design look better.  We 
considered replacing the stranded copper wire with single stranded aluminum wire. Our local 
hardware store carried the length of single stranded bare wire that we desired, but in 
aluminum and not copper.  Our early research indicated that this would not be a problem, but 
as we dug deeper into this question we uncovered claims and data that indicated substituting 
aluminum wire would cost our antenna nearly 3dB of signal strength.  This was clearly not 
acceptable for our transducer, so we decided to use the stranded bare copper wire since it was 
readily available in the 43 meter lengths we required.  Our later research would lead us to an 
altogether different type of wire to use for our final presentation antenna, Litz wire.  I will 
discuss Litz wire later.  At this early stage, it is important to note, we were completely unaware 
that Litz wire even existed.   

Figure 4:  Antenna Schematic 
Figure 4 Antenna schematic. 
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The choice of frame material came down to wood versus PVC pipe.  To be honest, the PVC pipe 
would have probably been the best choice because it is a light, cheap, and sturdy material.  PVC 
pipe would have given us more flexibility for design changes, and would have been more 
rugged overall.   However, we had plenty of free wood available to us that was also light, 
sturdy, and rugged enough.  We had a specific design in mind, and since free costs less than 
cheap, we decided use the free wood for our frame.   

With our antenna material in hand, it was time to actually construct the prototype antenna.  
We cut one piece of wood slightly larger than a meter, and then cut another two pieces of 
wood slightly larger than half a meter apiece.  We drilled 40 holes into our meter length wood, 
and then drilled 20 holes into each half meter length.  In all we drilled 80 holes into our frame 
with a hand power drill.  The hand drill produced somewhat crooked holes through our wood, 
so we decided that for the presentation antenna it would be essential to use a drill press.  
Regardless, the crooked prototype holes would eventually contain 19 loops of multi-stranded 
18 gauge copper wire that we hoped would respond effectively to the magnetic component of 
the radio wave.   

The antenna schematic dictated that the wire was to be wound in a square pattern that 
spiraled inwards at approximately 25mm’s per loop, and included a separate external loop 
known as a pickup coil.  The idea was to have the inner loop connect directly to the variable air 
capacitor, and the then the pickup loop would connect directly to the input of our voltage 
multiplier.  The pickup loop is essentially a secondary winding that helps impedance match, and 
therefore transfer, the captured signal to the intended load.  In total, counting the inner loop 
and the pickup coil, the amount of wire used for our prototype antenna was a little bit less than 
the size of 1/10th of a wavelength of a radiated electromagnetic wave varying in time at 
700,000 cycles per second, which is approximately 43 meters of wire.   

I do not want to conclude the antenna construction section without first mentioning the 
difficulties we faced while weaving the wire around the antenna frame.  Although not a 
complete comedy of errors, wiring the prototype antenna was certainly made more difficult 
because of the stranded copper wire.  We thought the logistics to snake 43 meters of stranded 
wire around 1 meter spiral loop was daunting enough.  To make matters worse, If we weaved 
the stranded copper wire too fast, the wire would kink so we would have to stop the process 
and fix the kink.  When a kink formed, the copper fibers began to separate.  This forced us to 
carefully, and slowly, pull the wire through nearly 80 separate holes.  

 Another problem with the stranded wire was that pulling at a pace slightly above “slow” would 
cause the stranded wire to splinter apart at its end.  When this splintering occurred, we would 
have to stop and attempt to tighten the strands of wire.  However, the wire would never regain 
its original compactness after it became splintered, making it harder to feed  the holes.  We 
thought that if we pulled the entire length of wire, all 43 meters of it through each individual 
hole, then the kinking and splintering would abate.  The problem with pulling the full length of 
wire individually through each hole, though it would have been the easiest method, was that 
we had no good place to store the 43 meters of wire each time it was pulled.  If we let the wire 
pile up into a mound, it would tangle up like a string of Christmas lights in a storage box!  
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Probably the best place to construct this spiral loop antenna would have been at a football 
field!   

In the end, to prevent tangling of the wire, we had to lay the wire all over the lab as we pulled it 
through each hole.  We wrapped the stranded copper wire around chairs, tables, and 
backpacks, all in an effort to prevent the wires from tangling into an unworkable mass.  As if to 
compromise with the physics and mechanics of the wire, we chose to manually pull a few 
meters at a time in an attempt to eliminate the negative effects inflicted on the structure of the 
wire.   

After much perseverance, the prototype antenna was finally complete.  Feeling that every good 
prototype needs a name, we decided to call our initial prototype antenna the Silver Surfer.  We 
did not have our Ramsey 100mW rated transmitter working at this point in time, so we were 
unable to test our prototype in a controlled laboratory.  For this reason, after first attaching a 
near-zero to 365pF variable air capacitor to the inner coil of the spiral loop antenna, and then 
attaching the pickup coil of the Silver Surfer to an oscilloscope, we went directly to the field to 
see if we could actually catch any radiated electromagnetic waves.   

2.1.4. Field testing with electrolytic capacitors 

Our primary frequency of interest was 700,000 Hz.  This being our goal, we chose Mason, Ohio 
as our primary field test site.  We knew that the closer we could get to a powerful source of 
transmission, the greater the chances became to obtain a harvestable magnitude signal.  With 
this in mind, we chose Mason. 

Mason, Ohio is home to a major transmitting antenna for 700WLW.  No longer the source of RF 
energy for Mr. Powell Crosley’s 500,000W monolith, Mason is still the home of powerful 
50,000W transmitter.  With the oscilloscope connected in parallel with the variable air 
capacitor, we observed a maximum of approximately 10V peaks with our antenna at the Mason 
test site.  We estimated that we were over 4 kilometers from the 50 kW transmitter, meaning 
we were clearly in the far field of the transmitting antenna.  Being in the far field of the 
radiating antenna was an essential component of our field studies, since in the lab near-field 
harvesting was unavoidable at 700KHz.   

After verifying the voltage across our capacitor, the antenna was connected a prototype 10-
stage voltage multiplier to the prototype antenna.  Applying the test voltage multiplier in 
parallel with the antenna reduced the amount of Voltage obtained across the air capacitor to 
just a volt or two.  Despite this, the voltage multiplier rectified the radiated electromagnetic 
signal, and multiply it into approximately 10 Volts DC at the final stage of the multiplier.  Now 
the only procedure that remained was to test whether or not the harvest could be captured, 
rectified, and multiplied energy into a capacitor.   

We used a standard electrolytic capacitor for our initial field tests.  We felt that the lower RC 
time constant was more apt to provide observable results.  The result of this, though not earth 
shattering to the RF harvesting initiated, was profound to us.  We were able to harvest RF 
energy into the electrolytic capacitors.  There was enough energy density between the output 
ports of the voltage multiplier to couple with the low RC time constant of the electrolytic 
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capacitor to store an electrical charge smoothly and fast.  The charge time was minimal as we 
expected.  We were encouraged by these early results from the electrolytic capacitors.  We 
were certain now that anthropogenic RF energy could be captured, stored, and utilized.  
Moreover, we knew that our antenna was an effective transducer for the electromagnetic 
waves, and would supply a voltage multiplier with a working electrical charge!  Ma 

2.1.5. Harvesting into supercapacitors: ESR’s effect on antenna q factor 

Harvesting into electrolytic capacitors was a milestone for the project.  However, electrolytic 
capacitors do not offer enough energy density to run our Texas Instruments application.  Super 
capacitors do provide an adequate energy density, but impose a different set of conditions into 
our harvesting circuit.  The early results proved to us that our spiral loop could at least operable 
with the concept of harvesting ambient RF energy, but whether or not it would interface well 
with a supercapacitor was still a question.  The spiral loop antenna would have to work with a 
supercapacitor in order to prove that RF harvesting can be utilized to supply a low power data 
recording application.   

As the equation    
             

 
 dictated, we were concerned about the effect of adding a 

super capacitor and voltage multiplier to the antenna’s circuit in respect to the Quality factor (Q 
factor) of the antenna.  The Q factor characterizes an antenna’s bandwidth relative to its center 
frequency.  A higher Q factor means that the antenna has a lower rate of energy loss relative to 

the energy it can store (
             

                
).  Basically the Q factor indicates the rate at which 

the oscillations die out after they have been initiated.  To understand Q factor, it is helpful to 
consider a bell analogy.  A typical bell is a high Q factor element.  When the underdamped Bell 
is struck, it oscillates for a long period of time.  Imagine that the bell was filled with concrete.  A 
bell filled with concrete will not resonate at all when it is struck, and is representative of 
overdamped antenna with a low Q factor.  Obviously, we want our antenna to resonate at the 
highest amplitudes possible when struck with an electromagnetic wave.  We understood that a 
higher Q factor means that the antenna would resonate around a much smaller bandwidth of 
frequencies, but we felt the tradeoff justified the pursuit of a high Q factor.  It is important to 
note that capacitors and antenna’s both are considered to have Q factors based on the ratio of  
             

                
 .  

When considered as a lumped element model, the capacitor is actually a resistance in series 
with a capacitance.  The lumped element model reveals what is known as the Equivalent Series 
Resistance (ESR), and represents the fact that a capacitor is not an ideal element.  An ideal 
capacitor would not dissipate any energy.  A real capacitor does dissipate small amounts of 
energy and this non-ideal behavior is characterized by ESR.  Super capacitors have an ESR of 
approximately 50Ω, while electrolytic capacitors have an ESR of 3Ω’s or less. 

The affect of ESR, and resistance in general, on the Q factor of the antenna was a concern for us 
as we designed our harvesting circuit.  Our harvester circuit be represented as a single circuit 
containing resistance, inductance, and capacitance (RLC circuit).  For a series RLC circuit, the Q 

factor can be calculated as Q = 
 

 
 *√

 

 
 .  This formula indicates that a higher resistance would 
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mean a lower Q for a series RLC circuit.  The RLC circuit we were considering, however, was a 

parallel circuit.  The Q factor for a parallel RLC circuit is defined as Q =R*√
 

 
.  This means that a 

smaller resistance in parallel with the resistance of the circuit would reduce the Q factor of the 
antenna, and that a higher resistance was desirable for our circuit.   

Ideally we wanted an infinite resistance between the output terminals of our spiral loop 
antenna, in parallel with the variable air capacitor.  This would preserve the bandwidth of our 
antenna and ensure that it would resonate at the highest amplitudes possible when struck by 
our specific electromagnetic wave.  An ESR of 50  for the supercapacitor is not an infinite 
resistance.  On the other hand, neither is the 3Ω resistance for the Electrolytic and it charged up 
without a problem.  For the supercapacitor, antenna Q factor was more of a consideration 
because we were no longer dealing with microfarads in our RC time constant, but we had .33 
farads to consider.  The greatly reduced RC time constant for the electrolytic capacitor could 
endure an overdamped antenna, whereas for the supercapacitor charge curve it could not be 
ignored.  We needed to resonate at the highest amplitudes possible in order to charge the 
supercapacitor at a rate that would sustain a real world sensor application. 

2.1.6. Voltage multiplier and the antenna 

I do not want to attempt to characterize the voltage multiplier circuit in this section.  My main 
goal of this section is to describe the thought process we underwent when considering the 
affect of the voltage multiplier on the antenna circuit.  I will also present some of our 
observations.  To see a more detailed characterization of the voltage multiplier, the voltage 
multiplier section of this report should be consulted.   

From an antenna standpoint, the 
considerations for the Voltage 
Multiplier were the same as the 
considerations for the 
Supercapacitor.  Would 
introducing the voltage multiplier 
overdamp or underdamp our 
resonator?   Considering the Q 
factor for our parallel RLC 

harvester circuit was still Q =R*√
 

 
 

, the coup de grace to the 
resonance of our antenna would 
be a small parallel resistance.  We 
already had the low ESR of the 
supercapacitor to consider, we did 
not want to compound the 

problem by designing a 
minimal resistance voltage 

Figure 5:  Spectrum analyzer screenshots with and 
without 

a Voltage Multiplier Load 

Figure 5.  Spectrum analyzer screenshots with and 
without 
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multiplier.  Our intuition told us that more multiplier stages in parallel would mean a lower 
overall resistance.  Our testing reinforced this claim.  The amplitudes we were able to resonate 
at were greatly attenuated by the higher stage voltage multiplier.  If we could resonate at 10 
volts using only the variable air capacitor, the amplitudes would be reduced to less than one 
when the 10 stage multiplier was introduced into the circuit.  If this was the case, and our 
thinking on the matter was correct, a lower stage multiplier would reduce the amplitude of our 
signal by much less.  This is indeed what we observed.  When a 3 stage voltage multiplier was 
interfaced with our spiral loop antenna, the voltage amplitudes actually increased!   

2.1.7. Towards the goal of harvesting RF energy 

With a better understanding of the overall design decisions we had to consider, and in 
possession of a positive electrolytic capacitor RF energy harvesting experience, we embarked 
upon the ultimate goal of harvesting RF energy into Electric Double Layer Capacitors       (aka     

Supercapacitors).  
Whereas we were able to 
charge the electrolytic 
capacitors in just a few 
seconds, the 
supercapacitors would 
initially take several days 
to charge.  The energy 
density, and the RC time 
constant to reach this 
energy density, is much 
lower for electrolytic 

capacitors than for supercapacitors, and therefore it takes 
more time to charge them to full energy capacity.  This and 
the Equivalent Series Resistance differences between 

Electrolytic and Electric Double Layer Capacitor were the main charge time culprits.  Regardless, 
we knew that our concept had been proven.  We knew that our approach was effective, and 
that our antenna and voltage multiplier designs worked.  Our main concern moving forward 
was charging the supercapacitor in a reasonable amount of time.  Though charging a 
supercapacitor in a few days certainly proves our concept, it does not provide enough energy to 
power or RF transmitter application.  How could RF harvesting be considered a useful 
technology if we could not even run one of the worlds most low power microcontrollers with it!  
We were positive that if we made alterations to our design we would be able to harvest at a 
faster rate.  Could we actually run a real world application with RF harvested energy?  That was 
still to be determined.     

2.1.8. Design improvements and triumph 

We decided to build a better spiral loop antenna.  The Silver Surfer was effective but 
aesthetically a mess.  The strands of wire that had become separated during the initial winding 
were made worse by field tests.  The copper colored paint job we chose for the wooden 

Figure 6.  RF energy Harvesting 
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structure was only semi successful, and the overall dimensions of the antenna were not precise.  
We decided to abandon the stranded copper wire (which was not a hard decision to make) in 
favor of some relatively more sophisticated “Litz” wire.  Litz wire consists of many tiny 
individually insulated wires.  The purpose of Litz wire is to reduce the increased AC resistance 
(aka the Skin Effect) the wire experiences when an alternating current is applied to it.  This 
improvement should reduce the power loss of the antenna and increase the antenna’s Q factor.  
We also wanted to increase the area of our loop while maintaining the highest number of loops 
possible.  Our goals here were to maximize the voltage available to us at our output terminals 

according to the equation    
             

 
 .  Aesthetically, we wanted to use a drill press 

instead of a hand drill in order to improve the precision of our holes.  The paint job was 
abandoned as well, in favor of the natural tan color of the boards that comprised the antenna 
structure. 

The new antenna was an instant improvement.  The better dimensioning and Litz wire were 
definitely driving factors toward better reception ability.  Each loop was more evenly spaced at 
approximately 25.4mm, and the furthest dimension of the outer loop drill holes were exactly 1 
meter.  The Litz wire introduced some major soldering problems for us, because the insulation 
on each strand of wire had to be removed before soldering. We achieved good conductivity 
with our solder by utilizing the cross area created from cutting the wire into separate pieces.  
The cross area for each strand of wire did not have any insulation because the insulation only 
covered the circumference of the wire.  We soldered the cross sectional area parallel to small 
copper “islands”, and from these copper islands we were able to attach our variable capacitor 
and meter probes to the antenna Litz wire.  The Litz wire made weaving the 43 meters of wire 
to the frame relatively simpler as well.  The Litz wire, and the firmer and better dimensioned 
construction, nearly doubled our lab reception voltage. 

Concurrently with building the new antenna, we were able to employ a 100mw transmitter at 
the senior design test lab.  No longer RF attenuated by the brick College of Applied Science 
walls, we were able to harvest energy at our convenience with our antenna, voltage multiplier, 
and supercapacitor.  Although still slow, the charge times were improving.  We were able to 
power a Texas Instruments MSP430 with a supercapacitor and send temperature information 
over a USB cable to a GUI that we designed.  This displayed for us the capability of a super 
capacitor to supply energy to an embedded device.  We wanted to improve upon the wired 
connection to the GUI, so we decided that we would transmit the data remotely to a GUI using 
a Texas instruments transceiver.  We wanted our harvester to completely sustain the energy 
required to transmit its voltage and temperature information.  This breakthrough came when 
we properly grounded the transmitting antenna from the Ramsey.  With this we were able to 
sustain the supercapacitor charge enough to perpetually sustain the energy requirements for 
wireless transmitter application.  More work is needed to improve harvesting a far field RF 
signal.  We were able to harvest a far field signal, but not at the rates attained in the near field.  
In the near field at least, the spiral loop antenna helped us achieve the goal of an RF energy 
supplied wireless transmitting device. 

2.1.9. Directivity of reception pattern better explained 
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As mentioned earlier, the spiral loop 
antenna is a high directivity antenna, and does 
not receive the same magnitude of signal in 
every direction.  This means that the gain of 
the antenna is maximized at particular nodes 
along the geometry of the antenna relative to 
an isotropic antenna, which receives a signal 
equally from all directions.  High directivity 
also means that there exist nulls relative to the 
geometry of the antenna where there the 
antenna gain is low.   

For a signal to be received by an antenna, a 
potential difference in voltage must exist 

across the wire in order to induce a current through the wire.  The geometry of the antenna 
where this effect is maximized is called a node of the antenna.  Imagine that each red rectangle 
above is a birds eye view of a single loop of wire on our antenna.  Also imagine that every black 
horizontal line represents an isopotential line where the voltage is the same.  For red rectangle 
A, it is easy to imagine the potential voltage difference across the length of wire.  For red 
rectangle B, on the other hand, the potential difference is much less.  When the spiral loop 
antenna is positioned like Red rectangle A above, there exists a Node where the gain relative to 
the gain of an isotropic antenna is the highest.  When the spiral loop antenna is oriented like 
Red rectangle B, a Null appears where the gain relative to the gain of an isotropic antenna is the 
lowest.  The angle of arrival of the RF signal is an important factor as well.  Remember the 

equation      
             

 
 ?  It is directly working of the above principles.  The angle of the 

arriving signal is represented by  .  You can see that       is used inside of a cosine function.  
Imagine that Red Rectangle A represents 0° and Red Rectangle B represents 90°.  You can 

see that when a cos(0°) is inserted to the equation,    
       

 
 is multiplied by 1.  However, 

when cos (90°) is inserted into the equation, 
       

 
 is multiplied by 0!   

3. RF rectification and voltage multiplier 

The diode semiconductor device is paramount to RF rectification and multiplication. This 
passive device converts AC current to DC current, but while doing so, is non-ohmic in the effect 
of voltage upon current going through this device. The diode equation represents its general 
relationship between voltage and current. The William Bradford Shockley Jr. diode equation 1 is 
show below. 

 

Figure 7. Advancing radio wave 
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1.        
  

     ⁄
    where   =

  

 
 

 

I is the diode current,  

IS is the reverse bias saturation current  

VD is the voltage across the diode, 

VT is the thermal voltage, and  

n is the ideality factor,  

  

The Shockley equation and its plot in figure 2 
shows the non ohmic I vs V properties that are 
basically exponential in shape and are 
influenced by the junction potential (Is) 
related to forward voltage, the voltage across 
the diode (VD), and temperature. The non-
ideality factor is a function of semiconductor 
material and fabrication process and adds to the forward voltage. The ideal diode would have 
properties as shown in figure 8, i.e. no current until the voltage reaches 0 V and then switch to 
infinite current. In other word, the ideal diode would act as switch on at all positive voltages. 
Finding a diode that approaches ideal in behavior would be best for low voltage RF signal 
rectification.  

Modeling diode behavior in simulation software goes beyond the Shockley equation adding 
nuances that predicts behaviors for AC signal. This project used LTSPICE software that is free 
and allows for the use of third party SPICE models enabling the prediction of RF harvesting 
circuits. Notice that the SPICE activation energy for the Germanium and Schottky diodes are 
close in value meaning that both approach ideal diode behavior to about the same extent. We 
will not go into the extended equations used in SPICE algorithms. 

Table 2 SPICE Diode Parameters next page 
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Figure 8. The Shockley diode equation and 
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Table 2 SPICE Diode Parameters Used for Software Simulation 

Symbol Name Parameter Units Default 

IS IS Saturation current (diode equation) A 1E-14 

RS RS Parsitic resistance (series resistance) Ω 0 

n N Emission coefficient, 1 to 2 - 1 

τD TT Transit time s 0 

CD(0) CJO Zero-bias junction capacitance F 0 

φ0 VJ Junction potential V 1 

m M Junction grading coefficient - 0.5 

- -     0.33 for linearly graded junction - - 

- -     0.5 for abrupt junction - - 

Eg EG Activation energy: eV 1.11 

- -     Si: 1.11 - - 

- -     Ge: 0.67 - - 

- -     Schottky: 0.69 - - 

pi XTI IS temperature exponent - 3.0 

- -     pn junction: 3.0 - - 

- -     Schottky: 2.0 - - 

kf KF Flicker noise coefficient - 0 

af AF Flicker noise exponent - 1 

FC FC 
Forward bias depletion capacitance 

coefficient 
- 0.5 

BV BV Reverse breakdown voltage V ∞ 

IBV IBV Reverse breakdown current A 1E-3 



16 
 

LTSPICE was used to model all the circuits for this project using SPICE models found on the 
internet for the common diodes 1N5819, 1N4001, 1N34A, and 1N5711. LTSPICE uses a graphic 
interface as shown in Figure 9. The 1N4001 diode was not seriously considered as a candidate 
because of its classic high forward voltage of 0.6 V. However, the Schottky diodes 1N5819 and 
1N5711 were compared to the 1N34A germanium diode that has been used for decades for 
weak signal rectification. The 1N34A was not considered because not available in SMT. The 
1N5819 was considered because of its cheap surplus price of $0.33 and the 1N5711 because it 
was a through hole style equivalent to the HS282 SMT. This project used ugly construction 
prototyping for proof of concept requiring the older though hole style leads. 

 

 

 Figure 9. LTSPICE graphical circuit interface comparing diodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 10, the LTSPICE simulations shows which diode would most closely approach ideal I-V 
behavior for project development. Definitely, the 1N4001 was the farthest from ideal and not 
considered. This project worked with the two different types of Schottky diodes, the 1N5819 
and 1N5711. Thus, the DC resistance of the diode in its active region is close to 1/slope. Figure 3 

 Figure 10. I-V results from LTSPICE simulation comparing diodes. 
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shows the 1N5819 to have the lowest resistance, about the same as the 1N4001, but also low 
forward voltage. However, Professor Everly showed in his presentation, “Back to the Future” 
[10], that it is better to look at the AC resistance of the diode. Everly equates that to equation 2. 
This may be a more accurate assessment of VM impedance. 

2. Zd = VTη / IS 

Figure 11 is a circuit comparing a 1N5711 with and without a capacitor for converting RF to DC. 
The 1N5711 diode is a through the hole equivalent to the Agilent HS282 used by Harris in his 
voltage multiplier circuit. It was selected for this study [9].  This project used 100 uF tantalum 
capacitors. The tantalum capacitor is a second generation capacitor that distinguishes itself 
from older capacitors in having high capacitance per volume and weight, lower equivalent 
series resistance (ESR), lower leakage, and higher operating temperature than other electrolytic 
capacitors. Better than disc and paper capacitors, while cheaper than super capacitors, 
Tantalum was used for the VM effectively. 

 

 

 

  

Figure 11. LTSPICE rectification of 908 kHz RF using a 1N5711 diode. 
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Figure 12 demonstrate the central need for the diode and the capacitor in combination for the 
rectification of RF to DC. The blue sinusoidal wave represents a 908 kHz carrier wave. The diode 
only allows for the positive voltage portion of the waveform to pass through it, and thus 
converts the alternating current to just positive current, i.e. direct current. Notice the loss of 
voltage in the green wave due to forward bias of the Schottky diode, another efficiency loss 
critical in converting weak RF to DC. Also this is a half wave rectifier, and thus another 50% is 
lost if only this circuit was used. The red line show the effect of a capacitor in line with the 
diode that store the voltage and thus converts the AC to almost pure DC. 

The Villard rectifier is shown in the circuit diagram below, a slightly different configuration of 
diode and capacitor that allow the negative half wave to charge the capacitor and then the 
alternating forward voltage now being positive with respect to the diode is passed by the diode 
to form the red wave. In Figure 14, the output is sinusoidal but its voltage is above 0 V making it 
DC. While impractical because of it high ripple, it is the basis for the Villard voltage multiplier 
(VM) to come.  

 

 

 

 

Figure 12. Results from the LTSPICE circuit in figure 4, the rectification of RF with a 
1N5711 diode. 



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. The Villard rectifier circuit has the capacitor before the diode and 
the diode positive is grounded. 

Figure 14. The output of the Villard rectifier is a sinusoidal waveform of positive 
voltage. 
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Figure 16.  LTspice simulation of a one stage Villard voltage multiplier 

The Villard voltage multiplier consists of a Villard rectifier with an adjacent capacitor and 
another parallel but reverse diode that effectively rectifies the positive sinusoidal wave and 
accumulates the charge on capacitor C2 smoothing out the ripple to a more practice DC current 
source, the green line in Figure 15. The Villard voltage multiplier became the basis for RF 
rectification for this project. VM voltage is equal to …  

 

VM voltage output = (Vp-Vfd)*2N 

Vp is voltage peak for the input sine wave 
Vfd is the forward voltage of the diode 
N is the number of stages 

Figure 15. Villard Voltage Multiplier circuit with 1 stage. 
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For one stage the VM output should be (1-0.2)(2*1) = 1.6 V, and 10 stages =16V. 

 

 

Figure 17. 10 Stage Villard voltage multiplier using 1N5819 diodes. 

After quickly bread boarding a VM single and double stage, we developed a 10 stage VM using 
the Manhattan Technique for prototyping [11]. The Manhattan Technique was named after 
Manhattan Island, because the technique make heavy use of copper clad boards, cut into small 
pieces i.e. islands, that are glued onto a larger copper clad board that acts as a ground plane 
and the island as circuit nodes. The technique is a step up from solder-less wire plug-in-board, 
because the contacts are solidly soldered   and the board contains a ground plane. The result is 
a prototype circuit board that can be mounted in an enclosure, and does not cost etching fees.  

 

Figure 18 above shows the board design for the 10 stage Villard voltage multiplier. The blue 
squares are the copper clad board islands, the orange components are the Tantalum capacitors, 
and the diodes are shown between the lines of island nodes. The copper clad boards were 
purchased on eBay, and cut with a small metal shear to the size of the board and islands. 
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Figure 18. Manhattan technique board layout done using PowerPoint. 
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Figure 19. A 10 stage 1N5819 Villard voltage multiplier prototype made using the Manhattan 
technique. 

In Figure 19, the islands were glued onto a copper board according to the layout plan. The 
islands being copper clad were easily soldered. The components were then soldered to these 
island nodes to produce circuit seen in the figure. 

 

Figure 20. Experimental data plot of Vp input versus DC output using 1N5819. 
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Figure 20 data was obtained using a signal generator and monitoring the input with an 
oscilloscope to assure that the Vp input was accurate. While accurate, this does not account for 
Vp drop when using real RF source, a drop due to impedance mismatch or loading. Please note 
that stage 2 and stage 3 lines , green and maroon, overlap. Obtaining the same data from stage 
2 and stage 3 was not expected, and must be due to bad components and/or connection. This 
was not realized until after we tried a new diode. In Figure 21, the 1N5819 voltage multiplier 
was simulated using LTSPICE software (SPICE electronic circuit simulation software provided by 
Linear Technologies) and the simulation results compared to experimental results to see if the 
same DC output should be theoretically expected or not. The plot indicates that the duplicate 
values were experimental error, and that in effect we really only had a 9 stage VM. 

 

 

Figure 21. LTSPICE simulation results for 1N5819 VM versus the experimental results 
indicating a difference. 

 

Some “DX” radio receivers that use diodes to rectify AM signals use parallel diodes to improve 
sensitivity. While these parallel diode designs exist on internet literature, professional literature 
could not be found to validate this concept. This project experimented with parallel diodes to 
lower its resistance, and thus provide better current. LTSPICE was used to simulate and 
compare the I-V characteristic of putting diodes in parallel. Figure 22 shows the LTSPICE 
simulation of the I-V characteristic of a 1N5711 diode put in multiple parallel combinations. The 
simulation show that greatest DC current jump per additional diode is from one to two diodes, 
so it may be cost effective. However, this does not analyze the effect on impedance at 908 KHz. 
This project compared a Villard VM made from single 1N5918 diodes with VM made from 
parallel 1N5711 diode to see if it would provide better rectification for weak signals. 
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Figure 22. LT spice simulation of the effect of parallel diodes on their combined I-V 
characteristics. 

 

Figure 23. Circuit diagram of 1N5711 VM with parallel diodes and the circuit prototype made 
using the Manhattan technique. 

PROTOTYPE BY MANHATTAN TECHNIQUE 
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Figure 23, the 10 stage VM was made using parallel 1N5711 diodes to see if parallel diodes 
would provide better current flow characteristics because the diode resistance would drop. The 
circuit was first simulated in LTSPICE. The impedance of the spiral loop antenna was measured 
using an Array Solutions AIM 4170 antenna analyzer at 724 ohms with 467 nH of inductance. 
That impedance was used in the simulations to predicted DC voltages at each stage. The 
1N5711 parallel diode prototype board used Manhattan construction as shown in Figure 23. 
The  

 

 

Figure 24. Comparison of 1N5711 VM simulation results versus experimental results. 

In Figure 25, a signal generator was used to provide a 708 kHz signal into the 1N5711 VM 
prototype and the Vp was measured using an oscilloscope. DC measurements were taken at 
each stage of the VM. The experimental data was plotted on the right side of Figure 25 and the 
simulation data on the left. The simulation and experimental correlated closely. The 
experimental diodes seemed to give a slightly higher result than simulation diodes.  

 

Figure 26 show the results from 10 VM simulations with the number of stages in the VM being 
the independent variable and charging current at 10 seconds being the dependent variable. 
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This was done because the question arose “if one only needs 4 stages to get the charging 
voltage needed for an application and the current is tapped at stage 4 off a 10 stage VM, do the 
unused stages lower the charging current.” In other words, what is better to use a fixed small 
number of stages or use 10 stages with the ability to tap off of various stages? The graph 
definitely shows that charging current drops of rapidly (exponentially) as the number of stages 
increase. Thus, once the voltage needed is obtained, there is no advantage in increasing the 
stages. Simulations were also run using a 10 stage VM tapped at 3, 4, and 5, and the theoretical 
charging currents measured. The red squares in the graph are currents associated with a 
tapped 10 stage VM scenario. Looking at this graph in figure 18, one can see that following 
unused stages do lower the charging current, slightly 15% to 9%, in the simulations. So yes, 
extraneous stages do have a negative effect, but I decided to use a 10 stage tapped circuit at 
the cost of a slight charging current loss in order to have the advantage of tuning the stages to 
obtain the voltage needed for the application. Other researcher have used a DC to DC 
conversion chip to obtain this same tuneability, but that too will have an insertion loss. 

 

 

Figure 25. Individual simulations of VMs from 1 stage to 10 stages measuring charging current 
to super capacitor. 
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Figure 27 shows the circuit diagram and enclosure used to test this harvester.  A 10 point rotary 
switch was used to tap current and voltage off of selected stages. The 100 uF Tantalum 
capacitors were rated at 16V so a 15.1 V Zener diode was placed between the last stage and 
ground to clamp voltage below the point of damaging capacitors. Another Zener diode at 5.5 V 
was place between the super capacitor and ground to clamp the charging voltage at a safe 
level. A 50 µA meter was installed and used with 1 stage to measure the current coming from 
the antenna to aid in tuning the antenna to the strongest radio signal. A 0.33 µF super capacitor 
was placed in the holder to the left on the picture. The enclosure has 3 pair of banana jacks on 
the side (not shown in the picture) that allows for the monitoring of VM and super capacitor 
voltage and the monitoring of super capacitor current. This system was tested using a 
laboratory source of RF signal from a Ramsey transmitter couple to the loop antenna through a 
coupling loop. The capacitor readily charged and could be used for the application described in 
the next section. 

 

Figure 26. Figure 27. RF energy harvester circuit and enclosure picture. 
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3.1. VM conclusions 

The 1N5818 made a better VM than the 1N5711, because it had a lower forward voltage that 
provided more sensitivity than the 1N5711 with parallel diode. The forward voltage 
characteristics of the diode are more important that it’s internal resistance. It was best to 
choose the minimum number of staged necessary to obtain final charging voltage, because the 
charging current diminishes exponentially with the increase of stages. LTSPICE software 
provided accurate predictions for a 908 KHz signal in the VM development. 

The project has a lot more experiments before it is ready to be put into a printed circuit; 
however the Manhattan technique has proven to be an effective way of prototype to get to 
that point. 

3.2. VM discussion 

While enough data was collected in the laboratory from near field laboratory generated RF to 
make conclusions on the VM, we never collected enough RF data from nearby radio stations to 
characterize the harvester with statistical significance for weak signals. We ran out of time. 
Future experiments would be to harvest local weak signals. Several experiments that could be 
done would be t 1) see if parallel diodes using the 1N5819 would be more sensitive than the 
1N5819 was 2) try larger antennas, albeit loop or long-wire, and 3) use a full wave voltage 
multiplier. A 5 stage full-wave VM may have been better than a 10 stage half-wave VM for the 
requirements of this weak RF signal project, because while using the same number of 
components it would deliver the voltage multiplication of a 10 stage VM in 5 stages. But, we 
have no data to support that hypothesis. However, weak signal sensitivity was a paramount 
issue with the goal of this project. 

 

Figure 27. Full wave Villard voltage multiplier found in Wikipedia. 

The 10 stage VM with taps at each stage was preferred over lower fixed stage VM, even though 
tapping is less efficient than using a fixed number of stages, because the tapped system seems 
to be tunable to signal input amplitude. Three or four stages may not provide enough voltage 
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from a weak radio station, whereas a tunable 10 may be tuned up to give more voltage. More 
data needs to be collect to test this hypothesis 

While the goal was to develop a completely passive RF energy collector, one experiment would 
be to use a microprocessor to control the system after an initial boot up charge was collector. 
The microcontroller could eventually monitor voltage and even switch between capacitors after 
one had been charged. It would be interesting to see if forward biasing, adding a DC voltage 
across the diode to compensate for the forward voltage barrier, would provide better 
sensitivity for weak stations or just increase the charging rate. With microcontroller control, it 
may be possible to alternate charging of several super capacitors and switch them to series 
connections to increase output voltage (most super capacitors are limited to 5.5 volts). 

4. Energy Storage Using Super Capacitor 

Energy is a very precious resource. Quoting a TI engineer: “Every joule wasted from the battery 
is a joule you will never get back” [12]. Finding a way to store energy has been a problem for 
years due to the cost and size of batteries. New technology such as super capacitor has been 
out recently and hoping to replace or being another energy storage alternative. While the 
technology is still fairly new, we attempted to use this new technology in this project to benefit 
our needs. 

Energy storage is a critical part of the project as the harvester can only harvest a very small 
amount of energy. Storing the energy and accumulating it to a usable energy level had become 
a problem that we needed to solve.  

A way we came up with storing the energy was to use a super capacitor as our storage device.  
Super capacitor offers a few advantages that favor our conditions versus a lithium-ion battery 
or regular capacitor. 

4.1. Background 

Capacitor, previously known as condenser, was invented by a German scientist named Ewald 
Georg von Kleist in 1745 [12]. The use of capacitor was not common till the invention of radio in 
the 20th centuries. Radio created the demand for capacitor, which it was used to tune the radio 
to achieve higher frequencies with higher capacitance and lower inductance. Other uses of 
capacitor include power conditioning, power factor correction, noise filter, smoothing the 
output of power supplies, and power storage. 

Super capacitor, or electric double-layer capacitor, is an electrochemical capacitor with 
relatively high energy density, usually hundreds of times greater than regular capacitor. Super 
capacitor was invited in 1957 by General Electric.  The uses of super capacitor are widely seen 
on automotives; where it is used to jump start an electric car.  

Lithium-ion battery is a type of rechargeable battery where the ion moves from the negative 
electrode to the positive electrode during a discharge and the opposite during a recharge [14]. 
It is commonly used in consumer electronics such as laptop, cell phone, digital cameras etc.  
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4.2. Storage device 

The requirement for this project was that the energy storage device needs to be able to accept 
a wide range of voltages instead of requiring a fixed voltage. A few energy storage candidates 
have been considered to examine their advantages and disadvantages to select the best one for 
this project.  The candidates are: lithium-ion battery, regular capacitor, and super capacitor. 
Below is a brief list of their advantages and disadvantages for the purpose of this project [15]. 

Table 3. Advantages and disadvantages of storage devices. 

Type Advantages Disadvantages 

Lithium-Ion High specific energy density 
Relatively low self-discharge 
No memory 
Wide variety of sizes and shapes 

Require protection circuit for 
charging 
Life degrade over time 
High internal resistance 

Regular Capacitor Cheap 
Many different types and 
materials 
High maximum voltage 
Variety ESR selection 

Low specific energy/power density 
High self-discharge rate 
 

Super Capacitor High specific power density 
High capacitance 
Short charge time 
Long life cycle 
Low ESR 
Low leakage 

Low overall specific energy density, 
relatively high versus regular 
capacitor 
Low maximum voltage 
Higher cost 
 

 Selecting the best energy storage device is critical to this project; it determines the possibility 
and expandability of our application. Knowing how much 
energy being able to harvest and accumulate would help us 
scale our application. From the comparison chart, lithium-ion 
have the most specific energy density, which allowing us to 
power an application for a long time. However, lithium-ion 
can only accept a fixed voltage and current source for 
charging, and while the RF strength in the air can varies, it 

would be very difficult to ensure a reliable charging source. 
Thus we have ruled out to not use lithium-ion.   

 

Regular capacitor was another option we have considered. It is cheap 
and comes in varieties of sizes and materials. An advantage of regular 
capacitor is it accepts a wild range of voltages, as high as kilo-volts. It 

eliminates the need of protecting and 
charging circuits. However, regular capacitors 
have a relatively high leakage rate, where in 

Figure 28. Lithium Ion Battery 

Figure 29. Electrolytic 
Capacitor 
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some cases it would leak out as much as it was charging. A special type of capacitor called the 
tantalum electrolytic can reduce the leakage dramatically, but the capacitance of a tantalum 
electrolytic is too small in comparison with other capacitors. A big capacitance size tantalum 
electrolytic capacitor was out of the equation due to the cost was more than our budget 
allowed. Another problem is they do not provide good specific energy for application uses.  

On the other hand, super capacitor was chosen to be our storage device due to its advantages 
matches our project’s need. Super capacitor has a higher specific power density and higher 
capacitance than regular capacitor, allowing a greater storage space with a minimum of 0.33 
farad. Super capacitor also has an extreme low ESR (Equivalent Series Resistance) for faster 
charging. The electrical principle is voltage equals to current times resistance; with a high 
voltage and small resistance, it results a higher current, thus fasting the charging on the super 
capacitor.  Another advantage of super capacitor is the low leakage rate. It can retain the 
charge for days without losing much of its charge, but the super 
capacitor must go through “memory” training. This memory is 
called the dielectric absorption or soakage [13]. This occurs when 
fully discharged a capacitor and left without applying voltage or 
shorting the thermals, the capacitor will gradually establish a 
charge in itself to a fraction of its original charge. The memory 
training is a series of charging and discharging performed on the 
super capacitor. Charging the super capacitor to 90% of its rated 
voltage and then discharge, then repeat the process 3 times. The 
memory training will help reduce leakage loss and getting “free” 
charges back in some way. Although super capacitor has a lower 
specific energy density versus a lithium-ion battery, the application we are using should still be 
able to run without discharging too much from the super capacitor.  

A super capacitor charger IC (Integrated Circuit) was examined to further the charging efficiency 
and overall reliability. The IC was Linear Technology’s LTC4425, a programmable current limited 
charger IC [16]. It is designed to have a consistence charge to the super capacitor from a lithium 
battery, USB, or a 2.7V to 5.5V current limited power supply. We ruled out this IC in our design. 
The IC itself requires some power to activate, which it will draw power from the harvester.  

A simple way to regulate the charging on the super capacitor can be done by using a zener 
diode rated at 4.8V. As soon as the voltage gets above the breakdown voltage, it will become 
reverse biased and it will short to the ground to stop charging the super capacitor [17]. Using a 
zener diode as a voltage regulation device may seem to be lousy and unreliable when 
compared to a voltage regulator. However, since the super capacitor can accepts any voltages 
below its rated voltage, we would only need to worry about it being overvoltage and not under-
voltage. A zener diode will regulate the upper voltage limit on our super capacitor while it 
allows any voltages below the limit to pass to charge the super capacitor. A voltage regulator 
can be used to give a constant voltage output source if the input voltage is above the dropout 
voltage. A dropout voltage is the minimum voltage differences between the input and the 
output of the voltage regulator, and in order for the voltage regulator to work, the input 
voltage must be above the dropout voltage. Also, if the input voltage is higher than the 
regulator can handle, it will damage the voltage regulator. Since the RF signal can varies from 

Figure 30. Super 
Capacitors 
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time and location factors, there is no guarantee to have a stable input signal. Thus simply 
limiting the upper limit voltage using a zener diode was the best approach for our design. One 
drawback with the zener is that it couldn’t limit the excesses current, but RF signal received 
from our antenna is going to be very small unless we are right next to a powerful transmitter to 
induce the power density loss, otherwise current should not be a problem. A robust design 
should and will be considered to optimize the charging technique. 

Here we take a look at the charging curve of the super capacitor using a 3-stages voltage 
multiplier [18].  

 

 

Figure 31. Super capacitor charging curve using 3-stages voltage multiplier 

The charging curve seems to be rather linear instead of a progression of a 5RC time constant. 

The calculated RC time constant is 16.5 seconds using the equation t = R * C, where R is the 
resistance in ohms and C is capacitance in farad. The resistance used in this calculation was the 
50 ohms ESR, and the capacitance was 0.33F. As we can see the charging curve above and 
compared with the calculation, the numbers doesn’t quite seem to match with the curve. The 
RC time constant would be an ideal charge time for the super capacitor, however, the actual 
charge time was much longer. Due to time constraint, we do not have additional researches to 
figure out why wasn’t the charge on the super capacitor follows the RC time constant. A simple 
yet to verify guess was that the voltage multiplier was not optimized for the super capacitor. As 
shown previously on the antenna output with and without the voltage multiplier, the voltage 
multiplier shifted the antenna output and even lowered the Q factor of the antenna. The basic 
principle of a voltage multiplier is the trade-off between voltage and current. The higher the 
voltage means the lower the current, and vice versa. In this case, the voltage multiplier might 
have had a hard time providing the current the super capacitor wants. Study shown that super 
capacitor is capable of drawing as much current as it can get in a short time. The voltage 
multiplier was probably bottlenecking the super capacitor’s charge, thus we see a linear charge 
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curve instead of an exponential curve.  Once again, this explanation was based on our 
knowledge on the concept, a scientific method and measurement should be experimented 
when time is permitted.  

4.3. Improvement 

There was one improvement can be done for this part of the design. The improvement was 
having a robust charging circuit that could protect the super capacitor from being overcharged 
while it does not take away much of the harvested energy. A low dropout voltage regulator 
from TI could be an alternative to make this improvement. 

We were able to charge the super capacitor using RF generated energy up to 5V in a reasonable 
time using a lab generated RF signal. The super capacitor then switched to our application and 
was able to power the application for a short period of time.  

5. Low Power Application 

Low power devices and ICs have always been a hot topic and where the technology trend is 
moving forward to. Moore’s law predicts that the number of transistors that can be placed on 
an IC doubles approximately every two years. This prediction has been true for years, and the 
transistors inside an IC are getting smaller and smaller. At the same time, voltage required to 
run the IC are also getting smaller. Cell phones that run on 3.7V battery, processors that can run 
under a voltage are examples of low power applications. In this project, we attempted to run a 
lower power application off RF harvested energy. 

Low power application utilizing RF harvested power to demonstrate self substantially. Power 
harvested from the RF harvester is very minimal. The amount of energy can be harvested and 
stored is critical to the application. Without much energy to deal with, our application must 
consume as low power as possible. Most modem applications required a decent amount of 
energy to run. A standard 5V is required on most applications or even 12V in some cases where 
the microcontroller is supplying the 5V rail to the components. With the voltage multiplier we 
have, voltage isn’t our biggest concern; we can easily step up the voltage to the required 
voltage for the application. However, the amount of current it consumes is our biggest 
problem.  

Based on the power consumption requirement, we had chosen TI’s (Texas’s Instruments) 
eZ430-RF2500 development kit. The kit includes two dongles; each dongle has a low power 
microcontroller MSP430 and a CC2500 transceiver [19]. One dongle has an extra component for 
the USB interface to the computer. It acts as a software emulator to allow programs to load 
into the MSP430. It also acts as a data bus for the computer to receive data from the MSP430. 

5.1. The MSP430 

MSP430 is TI’s ultra low power value line product. It is a 16-bit microcontroller featured with 
10-bit ADC resolutions and two 16-bit timers [20]. The selling features of this microcontroller 
are the power consumption modes. According to the specification, the MSP430 can operate at 
2.2 volts with a minimum of 120uA. The lowest power mode or the LPM3 consume about 0.7uA 
at 2.2V.  
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5.2. The CC2500 

CC2500 is TI’s low-cost 2.4GHz transceiver. It features with OOK, 2-FSK, GFSK, and MSK 
modulations operating between 2400 to 2483.5MHz [19]. The CC2500 has a programmable 
output power up to 1 dBm and programmable data rate from 1.2 to 500 kBuad. The operating 
voltage is between 1.8V to 3.6V and the current consumption during sleep mode is about 
400nA.  

5.3. The application 

The idea of our application was to use RF harvested energy to power a low power device(s) and 
sends data wirelessly. Imagine an environmental sensor out in the desert or the wilderness that 
is constantly sampling data and sends the data back to the receiver. This sensor would need a 
reliable power source and with minimum care as possible. Using a standard battery, it would 
require a replacement whenever the battery runs out of power. However, if using RF harvested 
energy, the sensor would never run out of power as long as the RF is broadcasting, and it would 
not require a user or technician out to the field to replace the power source. 

The purpose of our application was to sense the ambient temperature around the device and 
measure the supply voltage and then sends the data back to the computer via Wi-Fi 
transmission. It is done by using MSP430’s internal analog-to-digital converter to sample the 
ambient temperature and as well as sample the supply voltage. The data then patch into 
transmission packages to the CC2500 to transmit and receive. 

5.4. Hardware 

A simple hardware overview is shown below. 

 

 

Figure 32. Application Overview 

The left side of the diagram is the End Point (EP) dongle, attached and supplied by the super 
capacitor. The right side is the Access Point (AP) dongle, attached to the USB emulator and 
interface to the computer. The charge on the super capacitor was between 2.2V to 3.6V, any 
voltages below or above that range would not work, especially above the 3.8V threshold; it 
would damage the MSP430 permanently. If the voltage is below the operating voltage of 1.8V, 
the MSP430 simply won’t run without any permanent damage. However, to truly being able to 
run this application, a minimum of 2.2V was required due to the internal 16-bit timer required 
2.2V and as well as the CC2500 required a bit more voltage than the 1.8V MSP430. 
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According to the specification of the kit, the wireless communication range is roughly 50 feet on 
line-of-sight. Though 50 feet might not be as useful when it comes to wilderness, but the AP can 
serve as a data hub to receive and transmit to another data hub and so on, thus making long 
distance communication a possibility. However, this experiment has not yet been done, but 
theoretically do-able.   

5.5. Software 

The operation of the application is shown below in a flow chart diagram. 

ACCESS POINT PROGRAM FLOW END POINT PROGRAM FLOW

 

Figure 33. Program Flow Chart for AP and EP. 

The above flow chart shows the program flow for both dongles. The dongle that was connected 
to the computer is called the Access Point and the dongle that was out in the field is called the 
End Point. The Access Point (AP) act as a data hub, it can support multiple End Point (EP) 
devices and receive data to the computer via the USB interface. The EP act as the sensor that 
will read the temperature and voltage in our application.  

The operation of the AP is shown on the left side of the flow chart. When powered on, the 
MSP430 does self-initialization to get it ready for the network initialization. The network 
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protocol used in this kit is called simpliciTI, a proprietary protocol made by TI for their wireless 
IC. After network initialization, the AP began to search for EP(s) for link-up. If no EP found, the 
AP then proceed to initializing the internal analog-to-digital converter for temperature and 
voltage measurement. If EP was found, AP would listen for packages from EP and sends 
acknowledgment back to EP. If no package received, AP continues to take measurements. With 
the measurements made, the AP formats the data and sends it out to the computer via the USB 
interface at a fixed baud rate of 9600 bps. 

The operation of the EP is shown on the right side of the flow chart. Again, when powered on, 
MSP430 does a self-initialization. It then looks up its flash memory for wireless address. If no 
address found, it then creates a random address for communication. If address found, proceed 
to use the presenting address for communication. With the wireless address, EP initializes 
simpliciTI for networking with the AP. As soon as linkage between the AP and the EP is 
established, EP then initializes the internal analog-to-digital convert and takes sample of the 
temperature and voltage. EP reformats the data and sends the data to AP for display. It then 
goes into low power mode 3 (LPM3) for about 5 seconds and wakes up to take measurement 
again, and so on.  Low power mode 3 is MSP430’s second lowest power mode, it consumes 
about 0.7uA at 2.2V. 

5.6. User interface and display 

A user interface and display was developed for this application. A data displaying view of the 
interface and display is shown below. 

 

 

Figure 34. Application GUI 
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This user interface and display was developed using a programming language called Processing 
[21]. It is much similar to C/C++, except with its own libraries, syntaxes, and program flow.  

The display shows the access point and end point temperature and voltage readings. It 
calculates the lowest, current, and highest temperatures throughout all the measurements 
made. A time stamp will be created whenever the program received data from EP. This was 
because the EP goes into sleep mode for 5 seconds every time after measurements. It is also 
because the EP will be supplied by the super capacitor, if for some reasons that the super 
capacitor is drained or the power to the End Point has been lost, we would still get the last 
known temperature and voltages, and know the time when the EP stopped working. 

A simple program flow for the interface and display is shown below. 

 

 

 

Figure 35. Interface & Display Program Flow 

The interface and display program first initialize key variables that were used throughout the 
program. Then it prompts the user to enter a key to begin the data processing stage. When the 
program reads data from the serial port, it decodes the data string and determines whether it 
was AP or EP data. If data are from AP, the program formats the string and displays them on the 
screen. If data are from EP, a timestamp will be created at the time of data reception. The 
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program then follows a similar data format and displays the temperature and voltage on the 
screen. 

5.7. Improvements 

There are improvements needed to be done to make this application more robust. Some of the 
improvements were considered during the design of this project, but due to time constraint, 
they were not implemented in the project and they are the top priorities on the agenda when 
permitted by time.  

The first improvement we had looked at was on the hardware side. As it was mentioned above, 
the safe operating voltage for the dongle was from 2.2V to 3.8V. The dongle itself does not 
have a voltage regulator or any protection circuit. If the super capacitor’s charge voltage ever 
got above 3.8V, then the dongle is in risk of being damaged. A simple solution we had looked at 
was using a zener diode to clamp the voltage below 3.5V. However, a zener diode is not a safe 
and good way to regulate voltages, as it has noise and it is current depended as well. Another 
option we had looked at was using a very low dropout voltage regulator, such as TI’s LM3940 
5V to 3.3V voltage regulator [22].  

The second improvement is at the software side. The EP was sending data out every 5 seconds, 
meaning it goes to sleep for 5 seconds and wakes up for measurements. The reason being for 5 
seconds was because during that 5 seconds sleep time, the MSP430 consume the least amount 
of power. If we were to extend the sleep time to a longer period, we could save and reserve 
even more energy in our super capacitor. For example, a 30 minutes sleep time. The EP would 
sends out measurement data every 30 minutes and goes back to sleep. However, there’s a 
limitation to such improvement, as the 16-bit timer can only generate a 5 seconds real-time 
clock for us at the current operating frequency. A longer real-time clock means it would need to 
operate at an even lower frequency or having multiple timer interrupts that allows the MSP430 
to sleep and wake up multiple times before taking measurements. This is something we will 
look into to create an applicable application. 

The third improvement is at the interface and display software. The current display software 
can only support up to 1 EP. Multiple EP will be required for a real-world application. More 
interface options are needed to implement in the software. An ideal interface option was to be 
able click on a button to initiate a radio-wakeup for the CC2500, so that we could control the EP 
to take measurement when needed and goes back to sleep when not needed. 

Overall, the application fulfills the requirement for being low power application for our 
harvesting project. It solved the power consumption problem and able to sends important data 
back to the host. Improvements on this application will be looked at to make this application 
robust and applicable for real-world scenario. 

5.8. Codes 

Program codes for the wireless kit and the display program will be provided at the index page. 
Notice that the codes for the kit has multiple components and libraries for vary parts, including 
the CC2500 and simpliciTI. A complete set of code can be found at 
http://www.ti.com/tool/ez430-rf2500 However; it needs to combine with the AP and EP codes 

http://www.ti.com/tool/ez430-rf2500
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below to make the kit operate as what we had. The AP code below changes the analog-to-
digital converter calibration to better match the temperature reading. The EP code below 
changes the sleep time to 5 seconds versus 1 second. 

The code for the interface and display required the program “Processing” to run. Also a UC 
banner background is required in the directory folder. 
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8. APPENDIX 

8.1. Appendix A 

 

ACCESS POINT CODE 
 
#include <string.h> 
#include "bsp.h" 
#include "mrfi.h" 
#include "bsp_leds.h" 
#include "bsp_buttons.h" 
#include "nwk_types.h" 
#include "nwk_api.h" 
#include "nwk_frame.h" 
#include "nwk.h" 
#include "virtual_com_cmds.h" 
 
/* Frequency Agility helper functions */ 
static void    checkChangeChannel(void); 
static void    changeChannel(void); 
 
__interrupt void ADC10_ISR(void); 
__interrupt void Timer_A (void); 
 
/*------------------------------------------------------------------------------ 
 * Globals 
 *----------------------------------------------------------------------------*/ 
/* reserve space for the maximum possible peer Link IDs */ 
static linkID_t sLID[NUM_CONNECTIONS] = {0}; 
static uint8_t  sNumCurrentPeers = 0; 
 
/* callback handler */ 
static uint8_t sCB(linkID_t); 
 
/* received message handler */ 
static void processMessage(linkID_t, uint8_t *, uint8_t); 
 
/* work loop semaphores */ 
static volatile uint8_t sPeerFrameSem = 0; 
static volatile uint8_t sJoinSem = 0; 
static volatile uint8_t sSelfMeasureSem = 0; 
 
/* blink LEDs when channel changes... */ 
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static volatile uint8_t sBlinky = 0; 
 
/* data for terminal output */ 
const char splash[] = {"\r\n--------------------------------------------------  \r\n     ****\r\n     
****           eZ430-RF2500\r\n     ******o****    Temperature Sensor 
Network\r\n********_///_****   Copyright 2009\r\n ******/_//_/*****  Texas 
Instruments Incorporated\r\n  ** ***(__/*****   All rights reserved.\r\n      *********     
SimpliciTI1.1.1\r\n       *****\r\n        ***\r\n--------------------------------------------------
\r\n"}; 
volatile int * tempOffset = (int *)0x10F4; 
 
/*------------------------------------------------------------------------------ 
 * Frequency Agility support (interference detection) 
 *----------------------------------------------------------------------------*/ 
#ifdef FREQUENCY_AGILITY 
 
#define INTERFERNCE_THRESHOLD_DBM (-70) 
#define SSIZE    25 
#define IN_A_ROW  3 
static int8_t  sSample[SSIZE]; 
static uint8_t sChannel = 0; 
 
#endif  /* FREQUENCY_AGILITY */ 
 
/*------------------------------------------------------------------------------ 
 * Main 
 *----------------------------------------------------------------------------*/ 
void main (void) 
{ 
  bspIState_t intState; 
 
#ifdef FREQUENCY_AGILITY 
  memset(sSample, 0x0, sizeof(sSample)); 
#endif 
 
  /* Initialize board */ 
  BSP_Init(); 
 
  /* Initialize TimerA and oscillator */ 
  BCSCTL3 |= LFXT1S_2;                      // LFXT1 = VLO 
  TACCTL0 = CCIE;                           // TACCR0 interrupt enabled 
  TACCR0 = 12000;                           // ~1 second 
  TACTL = TASSEL_1 + MC_1;                  // ACLK, upmode 
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  /* Initialize serial port */ 
  COM_Init(); 
 
  //Transmit splash screen and network init notification 
  TXString( (char*)splash, sizeof splash); 
  TXString( "\r\nInitializing Network....", 26 ); 
 
  SMPL_Init(sCB); 
 
  // network initialized 
  TXString( "Done\r\n", 6); 
 
  /* green and red LEDs on solid to indicate waiting for a Join. */ 
  BSP_TURN_ON_LED1(); 
  BSP_TURN_ON_LED2(); 
 
  /* main work loop */ 
  while (1) 
  { 
    /* Wait for the Join semaphore to be set by the receipt of a Join frame from 
     * a device that supports an End Device. 
     * 
     * An external method could be used as well. A button press could be connected 
     * to an ISR and the ISR could set a semaphore that is checked by a function 
     * call here, or a command shell running in support of a serial connection 
     * could set a semaphore that is checked by a function call. 
     */ 
    if (sJoinSem && (sNumCurrentPeers < NUM_CONNECTIONS)) 
    { 
      /* listen for a new connection */ 
      while (1) 
      { 
        if (SMPL_SUCCESS == SMPL_LinkListen(&sLID[sNumCurrentPeers])) 
        { 
          break; 
        } 
        /* Implement fail-to-link policy here. otherwise, listen again. */ 
      } 
 
      sNumCurrentPeers++; 
 
      BSP_ENTER_CRITICAL_SECTION(intState); 
      sJoinSem--; 
      BSP_EXIT_CRITICAL_SECTION(intState); 
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    } 
 
 
    // if it is time to measure our own temperature... 
    if(sSelfMeasureSem) 
    { 
      char msg [6]; 
      char addr[] = {"HUB0"}; 
      char rssi[] = {"000"}; 
      int degC, volt; 
      volatile long temp; 
      int results[2]; 
 
      /* Get temperature */ 
      ADC10CTL1 = INCH_10 + ADC10DIV_4;       // Temp Sensor ADC10CLK/5 
      ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE + ADC10SR; 
      /* Allow ref voltage to settle for at least 30us (30us * 8MHz = 240 cycles) 
       * See SLAS504D for settling time spec 
       */ 
      __delay_cycles(240); 
      ADC10CTL0 |= ENC + ADC10SC;             // Sampling and conversion start 
      __bis_SR_register(CPUOFF + GIE);        // LPM0 with interrupts enabled 
      results[0] = ADC10MEM;                  // Retrieve result 
      ADC10CTL0 &= ~ENC; 
 
      /* Get voltage */ 
      ADC10CTL1 = INCH_11;                     // AVcc/2 
      ADC10CTL0 = SREF_1 + ADC10SHT_2 + REFON + ADC10ON + ADC10IE + REF2_5V; 
      __delay_cycles(240); 
      ADC10CTL0 |= ENC + ADC10SC;             // Sampling and conversion start 
      __bis_SR_register(CPUOFF + GIE);        // LPM0 with interrupts enabled 
      results[1] = ADC10MEM;                  // Retrieve result 
 
      /* Stop and turn off ADC */ 
      ADC10CTL0 &= ~ENC; 
      ADC10CTL0 &= ~(REFON + ADC10ON); 
 
       
          temp = ADC10MEM; 
 
       
      /* oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV = A10*423/1024 - 278 
       * the temperature is transmitted as an integer where 32.1 = 321 
       * hence 4230 instead of 423 
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       */ 
      temp = results[0]; 
      //degC = ((temp - 673) * 4230) / 1024; 
      degC = ((temp - 691) * 4230) / 1024; 
      if( (*tempOffset) != 0xFFFF ) 
      { 
        degC += (*tempOffset); 
      } 
 
      temp = results[1]; 
      volt = (temp*25)/512; 
 
      /* Package up the data */ 
      msg[0] = degC&0xFF; 
      msg[1] = (degC>>8)&0xFF; 
      msg[2] = volt; 
 
      /* Send it over serial port */ 
      transmitDataString(1, addr, rssi, msg ); 
 
      BSP_TOGGLE_LED1(); 
 
      /* Done with measurement, disable measure flag */ 
      sSelfMeasureSem = 0; 
    } 
 
    /* Have we received a frame on one of the ED connections? 
     * No critical section -- it doesn't really matter much if we miss a poll 
     */ 
    if (sPeerFrameSem) 
    { 
      uint8_t     msg[MAX_APP_PAYLOAD], len, i; 
 
      /* process all frames waiting */ 
      for (i=0; i<sNumCurrentPeers; ++i) 
      { 
        if (SMPL_SUCCESS == SMPL_Receive(sLID[i], msg, &len)) 
        { 
          ioctlRadioSiginfo_t sigInfo; 
 
          processMessage(sLID[i], msg, len); 
 
          sigInfo.lid = sLID[i]; 
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          SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SIGINFO, (void *)&sigInfo); 
 
          transmitData( i, sigInfo.sigInfo.rssi, (char*)msg ); 
          BSP_TOGGLE_LED2(); 
 
          BSP_ENTER_CRITICAL_SECTION(intState); 
          sPeerFrameSem--; 
          BSP_EXIT_CRITICAL_SECTION(intState); 
        } 
      } 
    } 
    if (BSP_BUTTON1()) 
    { 
      __delay_cycles(2000000);  /* debounce (0.25 seconds) */ 
      changeChannel(); 
    } 
    else 
    { 
      checkChangeChannel(); 
    } 
    BSP_ENTER_CRITICAL_SECTION(intState); 
    if (sBlinky) 
    { 
      if (++sBlinky >= 0xF) 
      { 
        sBlinky = 1; 
        BSP_TOGGLE_LED1(); 
        BSP_TOGGLE_LED2(); 
      } 
    } 
    BSP_EXIT_CRITICAL_SECTION(intState); 
  } 
 
} 
 
/* Runs in ISR context. Reading the frame should be done in the */ 
/* application thread not in the ISR thread. */ 
static uint8_t sCB(linkID_t lid) 
{ 
  if (lid) 
  { 
    sPeerFrameSem++; 
    sBlinky = 0; 
  } 
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  else 
  { 
    sJoinSem++; 
  } 
 
  /* leave frame to be read by application. */ 
  return 0; 
} 
 
static void processMessage(linkID_t lid, uint8_t *msg, uint8_t len) 
{ 
  /* do something useful */ 
  if (len) 
  { 
    BSP_TOGGLE_LED1(); 
  } 
  return; 
} 
 
static void changeChannel(void) 
{ 
#ifdef FREQUENCY_AGILITY 
  freqEntry_t freq; 
 
  if (++sChannel >= NWK_FREQ_TBL_SIZE) 
  { 
    sChannel = 0; 
  } 
  freq.logicalChan = sChannel; 
  SMPL_Ioctl(IOCTL_OBJ_FREQ, IOCTL_ACT_SET, &freq); 
  BSP_TURN_OFF_LED1(); 
  BSP_TURN_OFF_LED2(); 
  sBlinky = 1; 
#endif 
  return; 
} 
 
/* implement auto-channel-change policy here... */ 
static void checkChangeChannel(void) 
{ 
#ifdef FREQUENCY_AGILITY 
  int8_t dbm, inARow = 0; 
 
  uint8_t i; 
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  memset(sSample, 0x0, SSIZE); 
  for (i=0; i<SSIZE; ++i) 
  { 
    /* quit if we need to service an app frame */ 
    if (sPeerFrameSem || sJoinSem) 
    { 
      return; 
    } 
    NWK_DELAY(1); 
    SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_RSSI, (void *)&dbm); 
    sSample[i] = dbm; 
 
    if (dbm > INTERFERNCE_THRESHOLD_DBM) 
    { 
      if (++inARow == IN_A_ROW) 
      { 
        changeChannel(); 
        break; 
      } 
    } 
    else 
    { 
      inARow = 0; 
    } 
  } 
#endif 
  return; 
} 
 
/*------------------------------------------------------------------------------ 
* ADC10 interrupt service routine 
------------------------------------------------------------------------------*/ 
#pragma vector=ADC10_VECTOR 
__interrupt void ADC10_ISR(void) 
{ 
  __bic_SR_register_on_exit(CPUOFF);        // Clear CPUOFF bit from 0(SR) 
} 
 
/*------------------------------------------------------------------------------ 
* Timer A0 interrupt service routine 
------------------------------------------------------------------------------*/ 
#pragma vector=TIMERA0_VECTOR 
__interrupt void Timer_A (void) 
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{ 
  sSelfMeasureSem = 1; 
}  
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END POINT CODE 
 
#include "bsp.h" 
#include "mrfi.h" 
#include "nwk_types.h" 
#include "nwk_api.h" 
#include "bsp_leds.h" 
#include "bsp_buttons.h" 
#include "vlo_rand.h" 
 
/*------------------------------------------------------------------------------ 
 * Defines 
 *----------------------------------------------------------------------------*/ 
/* How many times to try a TX and miss an acknowledge before doing a scan */ 
#define MISSES_IN_A_ROW  2 
 
/*------------------------------------------------------------------------------ 
 * Prototypes 
 *----------------------------------------------------------------------------*/ 
static void linkTo(void); 
void createRandomAddress(void); 
__interrupt void ADC10_ISR(void); 
__interrupt void Timer_A (void); 
 
/*------------------------------------------------------------------------------ 
* Globals 
------------------------------------------------------------------------------*/ 
static linkID_t sLinkID1 = 0; 
/* Temperature offset set at production */ 
volatile int * tempOffset = (int *)0x10F4; 
/* Initialize radio address location */ 
char * Flash_Addr = (char *)0x10F0; 
/* Work loop semaphores */ 
static volatile uint8_t sSelfMeasureSem = 0; 
 
/*------------------------------------------------------------------------------ 
 * Main 
 *----------------------------------------------------------------------------*/ 
void main (void) 
{ 
  addr_t lAddr; 
 
  /* Initialize board-specific hardware */ 
  BSP_Init(); 
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  /* Check flash for previously stored address */ 
  if(Flash_Addr[0] == 0xFF && Flash_Addr[1] == 0xFF && 
     Flash_Addr[2] == 0xFF && Flash_Addr[3] == 0xFF ) 
  { 
    createRandomAddress(); // Create and store a new random address 
  } 
 
  /* Read out address from flash */ 
  lAddr.addr[0] = Flash_Addr[0]; 
  lAddr.addr[1] = Flash_Addr[1]; 
  lAddr.addr[2] = Flash_Addr[2]; 
  lAddr.addr[3] = Flash_Addr[3]; 
 
  /* Tell network stack the device address */ 
  SMPL_Ioctl(IOCTL_OBJ_ADDR, IOCTL_ACT_SET, &lAddr); 
 
  /* Initialize TimerA and oscillator */ 
  BCSCTL3 |= LFXT1S_2;                      // LFXT1 = VLO 
  TACCTL0 = CCIE;                           // TACCR0 interrupt enabled 
  TACCR0 = 12000;                           // ~ 1 sec 
  TACTL = TASSEL_1 + MC_2;                  // ACLK, upmode 
 
  /* Keep trying to join (a side effect of successful initialization) until 
   * successful. Toggle LEDS to indicate that joining has not occurred. 
   */ 
  while (SMPL_SUCCESS != SMPL_Init(0)) 
  { 
    BSP_TOGGLE_LED1(); 
    BSP_TOGGLE_LED2(); 
    /* Go to sleep (LPM3 with interrupts enabled) 
     * Timer A0 interrupt will wake CPU up every second to retry initializing 
     */ 
    __bis_SR_register(LPM3_bits+GIE);  // LPM3 with interrupts enabled 
  } 
 
  /* LEDs on solid to indicate successful join. */ 
  BSP_TURN_ON_LED1(); 
  BSP_TURN_ON_LED2(); 
 
  /* Unconditional link to AP which is listening due to successful join. */ 
  linkTo(); 
 
  while(1); 
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} 
 
static void linkTo() 
{ 
  uint8_t msg[3]; 
#ifdef APP_AUTO_ACK 
  uint8_t misses, done; 
#endif 
 
  /* Keep trying to link... */ 
  while (SMPL_SUCCESS != SMPL_Link(&sLinkID1)) 
  { 
    BSP_TOGGLE_LED1(); 
    BSP_TOGGLE_LED2(); 
    /* Go to sleep (LPM3 with interrupts enabled) 
     * Timer A0 interrupt will wake CPU up every second to retry linking 
     */ 
    __bis_SR_register(LPM3_bits+GIE); 
  } 
 
  /* Turn off LEDs. */ 
  BSP_TURN_OFF_LED1(); 
  BSP_TURN_OFF_LED2(); 
 
  /* Put the radio to sleep */ 
  SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0); 
 
  while (1) 
  { 
    /* Go to sleep, waiting for interrupt every second to acquire data */ 
    __bis_SR_register(LPM3_bits); 
 
    /* Time to measure */ 
    if (sSelfMeasureSem) { 
      volatile long temp; 
      int degC, volt; 
      int results[2]; 
#ifdef APP_AUTO_ACK 
      uint8_t      noAck; 
      smplStatus_t rc; 
#endif 
 
      /* Get temperature */ 
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      ADC10CTL1 = INCH_10 + ADC10SSEL_1;// + ADC10DIV_4;       // Temp Sensor 
ADC10CLK/5 
      ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE + ADC10SR; 
      /* Allow ref voltage to settle for at least 30us (30us * 8MHz = 240 cycles) 
       * See SLAS504D for settling time spec 
       */ 
      //__delay_cycles(240); 
      ADC10CTL0 |= ENC + ADC10SC;             // Sampling and conversion start 
      __bis_SR_register(CPUOFF + GIE);        // LPM0 with interrupts enabled 
      results[0] = ADC10MEM;                  // Retrieve result 
      ADC10CTL0 &= ~ENC; 
 
      /* Get voltage */ 
      ADC10CTL1 = INCH_11 + ADC10SSEL_1;                     // AVcc/2 
      ADC10CTL0 = SREF_1 + ADC10SHT_2 + REFON + ADC10ON + ADC10IE + REF2_5V; 
     // __delay_cycles(240); 
      ADC10CTL0 |= ENC + ADC10SC;             // Sampling and conversion start 
      __bis_SR_register(CPUOFF + GIE);        // LPM0 with interrupts enabled 
      results[1] = ADC10MEM;                  // Retrieve result 
 
      /* Stop and turn off ADC */ 
      ADC10CTL0 &= ~ENC; 
      ADC10CTL0 &= ~(REFON + ADC10ON); 
 
      /* oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV = A10*423/1024 - 278 
       * the temperature is transmitted as an integer where 32.1 = 321 
       * hence 4230 instead of 423 
       */ 
      temp = results[0]; 
      degC = ((temp - 672) * 4230) / 1024; 
      if( (*tempOffset) != 0xFFFF ) 
      { 
        degC += (*tempOffset); 
      } 
 
      /* message format,  UB = upper Byte, LB = lower Byte 
      ------------------------------- 
      |degC LB | degC UB |  volt LB | 
      ------------------------------- 
         0         1          2 
      */ 
      temp = results[1]; 
      volt = (temp*25)/512; 
      msg[0] = degC&0xFF; 
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      msg[1] = (degC>>8)&0xFF; 
      msg[2] = volt; 
 
      /* Get radio ready...awakens in idle state */ 
      SMPL_Ioctl( IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, 0); 
 
#ifdef APP_AUTO_ACK 
      /* Request that the AP sends an ACK back to confirm data transmission 
       * Note: Enabling this section more than DOUBLES the current consumption 
       *       due to the amount of time IN RX waiting for the AP to respond 
       */ 
      done = 0; 
      while (!done) 
      { 
        noAck = 0; 
 
        /* Try sending message MISSES_IN_A_ROW times looking for ack */ 
        for (misses=0; misses < MISSES_IN_A_ROW; ++misses) 
        { 
          if (SMPL_SUCCESS == (rc=SMPL_SendOpt(sLinkID1, msg, sizeof(msg), 
SMPL_TXOPTION_ACKREQ))) 
          { 
            /* Message acked. We're done. Toggle LED 1 to indicate ack received. */ 
            BSP_TURN_ON_LED1(); 
            __delay_cycles(2000); 
            BSP_TURN_OFF_LED1(); 
            break; 
          } 
          if (SMPL_NO_ACK == rc) 
          { 
            /* Count ack failures. Could also fail becuase of CCA and 
             * we don't want to scan in this case. 
             */ 
            noAck++; 
          } 
        } 
        if (MISSES_IN_A_ROW == noAck) 
        { 
          /* Message not acked */ 
          BSP_TURN_ON_LED2(); 
          __delay_cycles(2000); 
          BSP_TURN_OFF_LED2(); 
#ifdef FREQUENCY_AGILITY 
          /* Assume we're on the wrong channel so look for channel by 
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           * using the Ping to initiate a scan when it gets no reply. With 
           * a successful ping try sending the message again. Otherwise, 
           * for any error we get we will wait until the next button 
           * press to try again. 
           */ 
          if (SMPL_SUCCESS != SMPL_Ping(sLinkID1)) 
          { 
            done = 1; 
          } 
#else 
          done = 1; 
#endif  /* FREQUENCY_AGILITY */ 
        } 
        else 
        { 
          /* Got the ack or we don't care. We're done. */ 
          done = 1; 
        } 
      } 
#else 
 
      /* No AP acknowledgement, just send a single message to the AP */ 
      SMPL_SendOpt(sLinkID1, msg, sizeof(msg), SMPL_TXOPTION_NONE); 
 
#endif /* APP_AUTO_ACK */ 
 
      /* Put radio back to sleep */ 
      SMPL_Ioctl( IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, 0); 
 
      /* Done with measurement, disable measure flag */ 
      sSelfMeasureSem = 0; 
    } 
  } 
} 
 
void createRandomAddress() 
{ 
  unsigned int rand, rand2; 
  do 
  { 
    rand = TI_getRandomIntegerFromVLO();    // first byte can not be 0x00 of 0xFF 
  } 
  while( (rand & 0xFF00)==0xFF00 || (rand & 0xFF00)==0x0000 ); 
  rand2 = TI_getRandomIntegerFromVLO(); 



59 
 

 
  BCSCTL1 = CALBC1_1MHZ;                    // Set DCO to 1MHz 
  DCOCTL = CALDCO_1MHZ; 
  FCTL2 = FWKEY + FSSEL0 + FN1;             // MCLK/3 for Flash Timing Generator 
  FCTL3 = FWKEY + LOCKA;                    // Clear LOCK & LOCKA bits 
  FCTL1 = FWKEY + WRT;                      // Set WRT bit for write operation 
 
  Flash_Addr[0]=(rand>>8) & 0xFF; 
  Flash_Addr[1]=rand & 0xFF; 
  Flash_Addr[2]=(rand2>>8) & 0xFF; 
  Flash_Addr[3]=rand2 & 0xFF; 
 
  FCTL1 = FWKEY;                            // Clear WRT bit 
  FCTL3 = FWKEY + LOCKA + LOCK;             // Set LOCK & LOCKA bit 
} 
 
/*------------------------------------------------------------------------------ 
 * ADC10 interrupt service routine 
 *----------------------------------------------------------------------------*/ 
#pragma vector=ADC10_VECTOR 
__interrupt void ADC10_ISR(void) 
{ 
  __bic_SR_register_on_exit(CPUOFF);        // Clear CPUOFF bit from 0(SR) 
} 
 
/*------------------------------------------------------------------------------ 
 * Timer A0 interrupt service routine 
 *----------------------------------------------------------------------------*/ 
#pragma vector=TIMERA0_VECTOR 
__interrupt void Timer_A (void) 
{ 
  sSelfMeasureSem = 1; 
  __bic_SR_register_on_exit(LPM3_bits);        // Clear LPM3 bit from 0(SR) 
} 
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Interface and Display Codes 
import controlP5.*; 
import de.looksgood.ani.*; 
import de.looksgood.ani.easing.*; 
PFont Menufont; 
int i, COMPort, dataRead, keyIndex=10,welcome=1, key1=1, onlineyr, onlinemon, 
onlineday, onlinehr, onlinemin, onlinesec; 
float APtemp, ED1temp, ED1signal, ED2temp, ED2signal; 
float lowAPtemp = 999, highAPtemp = 0, lowED1temp = 999, highED1temp = 0, 
lowED2temp = 999, highED2temp = 0; 
String APlowtemp, APcurrenttemp, APhightemp, APvolt, ED1lowtemp, ED1currenttemp, 
ED1hightemp, ED1volt, ED1yr, ED1mon, ED1day, ED1hr, ED2lowtemp, ED2currenttemp, 
ED2hightemp, ED2volt, ED2yr, ED2mon, ED2day, ED2hr, ED2min, ED2sec; 
int [] keyIn = new int[11]; 
boolean portChosen = false; 
Serial myPort; 
PImage banner; 
void setup() 
{ // Start of Setup 
// Banner & Background   
background(0);     
size(900, 500); 
banner = loadImage("UCBanner.jpg"); 
image(banner,0,0); 
// Welcome text 
if(welcome == 1){ 
Menufont = loadFont("ComicSansMS-12.vlw"); 
textFont(Menufont, 25); 
text("WELCOME TO THE RF HARVESTING PROJECT", 160, 250); 
textSize(15); 
text("Press Enter To Start The Application", 320, 300); 
} // End of Welcome text 
} // End of Setup 
void keyPressed() 
{ // Start of Key Pressed function 
 if (key1 == 1 & key == ENTER) // Start of ENTER key pressed 
{ 
welcome = 0; // Disable welcome text 
key1 = 0; // Disable ENTER key 
setup(); // Call setup for screen 
// Check and list COM ports 
import processing.serial.*; 
for(i=0;i<Serial.list().length;i++) 
{ 
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  //text("["+i+"] " + Serial.list()[i],10, 140+14*i); 
   } 
  }  
 
 if(portChosen == false & key1 == 0){ 
 
      while(i<10) 
      { 
       myPort = new Serial(this, Serial.list()[i-1],9600); //2400 for msp430 only 
      dataRead = myPort.read(); 
       
     if(dataRead != -1 || dataRead == -1) 
    { 
      portChosen = true; 
      text("Please press the MSP430 start button to start temperature reading", 10, 120); 
      break; 
    }  
    else { 
     i = i - 1;  
    } 
      } 
 } 
  
} // End of Key Pressed function 
 
void draw() 
{ // Begin of Draw 
 
 if(portChosen == true) 
  { 
   dataRead = myPort.read(); 
  if(dataRead != -1 & dataRead !=248) 
  {     
     
    background(0);     
    size(900, 500); 
    image(banner,0,0);  
 
    delay(1000); 
    String inBuffer = myPort.readString();  
    int leng = inBuffer.length(); 
    if (inBuffer != null && leng > 40) { // begin serial data reading 
    String Datastring = inBuffer; 
  //  println(Datastring); 
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    //Node 0 (AP) readings 
    if(Datastring.substring(1, 16).equals("Node:HUB0,Temp:") == true) { 
    APtemp = float(Datastring.substring(17, 21)); 
    println("AP temp:" + APtemp); 
    APvolt = Datastring.substring(31, 34); 
    println("AP Volt:" + APvolt); 
    } // End of Node 0 reading 
      //Node 1 (ED) readings 
    else if(Datastring.substring(1, 6).equals("$0001") == true) { 
     ED1temp = float(Datastring.substring(8, 12)); 
     println("ED1 temp:" + ED1temp); 
     ED1volt = Datastring.substring(14, 17); 
     println("ED1 volt:" + ED1volt); 
     ED1signal = float(Datastring.substring(18, 21)); 
     println("ED1 signal:" + ED1signal); 
   onlineyr = year(); 
    ED1yr = String.valueOf(onlineyr); 
    onlinemon = month(); 
    ED1mon = String.valueOf(onlinemon); 
    onlineday = day();  
    ED1day = String.valueOf(onlineday); 
    onlinehr = hour(); 
    ED1hr = String.valueOf(onlinehr); 
    onlinemin = minute(); 
    onlinesec = second(); 
    } // End of Node 1 readings  
     //Node 2 (ED) readings 
    else if(Datastring.substring(1, 6).equals("$0002") == true) { 
     ED1temp = float(Datastring.substring(8, 12)); 
     println("ED2 temp:" + ED2temp); 
     ED1volt = Datastring.substring(14, 17); 
     println("ED2 volt:" + ED2volt); 
     ED1signal = float(Datastring.substring(18, 21)); 
     println("ED2 signal:" + ED2signal); 
    onlineyr = year(); 
    ED2yr = String.valueOf(onlineyr); 
    onlinemon = month(); 
    ED2mon = String.valueOf(onlinemon); 
    onlineday = day();  
    ED2day = String.valueOf(onlineday); 
    onlinehr = hour(); 
    ED2hr = String.valueOf(onlinehr); 
    onlinemin = minute(); 
    onlinesec = second(); 
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    } // End of Node 2 readings        
   } // End of Data reading from serial port 
displayAPtemp(); // AP temperature 
if(ED1volt != null){ 
 displayED1();   
 } 
 if(ED2volt != null){ 
   displayED2(); 
 } 
     }  // End of if dataRead 
   } // End of port chosen   
} // End of Draw 
void displayAPtemp() //AP temperature reading on GUI function 
{           
      if(lowAPtemp >= APtemp) // Calculate Lowest Temp 
      { 
        lowAPtemp = APtemp; 
        APlowtemp = nf(lowAPtemp,1,1); 
      } 
       
      if(highAPtemp <= APtemp) // Calculate Highest Temp 
      { 
        highAPtemp = APtemp; 
        APhightemp = nf(highAPtemp,1,1); 
      }  
       
      APcurrenttemp = nf(APtemp,1,1); // Current Temp  
      text("Access Point Lowest  Temperature: ", 10, 120); 
      text(APlowtemp, 255, 120); 
      text("°F", 285, 120); 
      text("Access Point Current Temperature: ", 10, 135); 
      text(APcurrenttemp, 255, 135);       
      text("°F", 285, 135);    
      text("Access Point Highest Temperature: ", 10, 150); 
      text(APhightemp, 255, 150);       
      text("°F", 285, 150);  
       text("Access Point Supply Voltage:", 10, 165); 
      text(APvolt, 215, 165); 
      text("V", 245, 165); 
} // End of AP tempeature on GUI function 
void displayED1() //ED1 display function 
{  
      if(lowED1temp >= ED1temp) // Calculate Lowest Temp 
      { 
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        lowED1temp = ED1temp; 
        ED1lowtemp = nf(lowED1temp,1,1); 
      } 
       
      if(highED1temp <= ED1temp) // Calculate Highest Temp 
      { 
        highED1temp = ED1temp; 
        ED1hightemp = nf(highED1temp,1,1); 
      }   
      ED1currenttemp = nf(ED1temp,1,1); // Current Temp 
      text("End Point Lowest  Temperature: ", 10, 220); 
      text(ED1lowtemp, 235, 220); 
      text("°F", 265, 220); 
  
      text("End Point Current Temperature: ", 10, 235); 
      text(ED1currenttemp, 235, 235);       
      text("°F", 265, 235);    
       
      text("End Point Highest Temperature: ", 10, 250); 
      text(ED1hightemp, 235, 250);       
      text("°F", 265, 250);  
 
      text("End Point Supply Voltage:", 10, 265); 
      text(ED1volt, 195, 265); 
      text("V", 225, 265); 
      text("Last Reading Was Taken At:" +" "+ onlinemon + "/" + onlineday + "/" + onlineyr 
+ ", " + onlinehr + ":" + onlinemin + ":" + onlinesec, 10, 200); 
       
} // End of ED1 display function 
 
void displayED2() //ED2 display function 
{ 
       
      if(lowED2temp >= ED2temp) // Calculate Lowest Temp 
      { 
        lowED2temp = ED2temp; 
        ED2lowtemp = nf(lowED2temp,1,1); 
      } 
       
      if(highED2temp <= ED2temp) // Calculate Highest Temp 
      { 
        highED2temp = ED2temp; 
        ED2hightemp = nf(highED2temp,1,1); 
      }  
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      ED2currenttemp = nf(ED2temp,1,1); // Current Temp 
       
      text("End Point 2 Lowest  Temperature: ", 10, 320); 
      text(ED2lowtemp, 235, 320); 
      text("°F", 265, 320); 
  
      text("End Point 2 Current Temperature: ", 10, 335); 
      text(ED2currenttemp, 235, 335);       
      text("°F", 265, 335);    
       
      text("End Point 2 Highest Temperature: ", 10, 350); 
      text(ED2hightemp, 235, 350);       
      text("°F", 265, 350);  
 
      text("End Point 2 Supply Voltage:", 10, 365); 
      text(ED2volt, 195, 365); 
      text("V", 225, 365); 
      text("Last Reading Was Taken At:" +" "+ ED2mon + "/" + ED2day + "/" + ED2yr + ", " + 
ED2hr + ":" + onlinemin + ":" + onlinesec, 10, 300); 
       
} // End of ED2 display function 

 
 

  


