The IT Dashboard

By

Chuck Back

Submitted to
the Faculty of the Information Technology Program
in Partial Fulfillment of the Requirements
for
the Degree of Bachelor of Science
in Information Technology

© Copyright 2011 Chuck Back

The author grants to the Information Technology Program permission
to reproduce and distribute copies of this document in whole or in part.

______________________________ __________________
Chuck Back Date

______________________________ __________________
Profess John Nyland, Faculty Advisor Date
Acknowledgements

I would like to give special acknowledgment to Dr. Michal Kouril, the IT Dashboard’s project sponsor from Research IT Services at Children’s Hospital. Dr. Kouril brought the concept of the IT Dashboard to the Senior Design classroom, and accepted my invitation to execute the project. The IT Dashboard was a total success because of his guidance.
Table of Contents

1. Statement of the problem ... 7
2. Description of the solution ... 9
 2.1 Architecture ... 10
 2.1.1 User Interface .. 11
 2.1.2 Security -- User Access Control and Data Protection 12
 2.1.3 Data Management ... 12
 2.1.4 Data Repositories Integrator .. 12
 2.1.5 Data Repositories ... 12
 2.2 Specifications ... 13
 2.2.1 User Profiles ... 16
3. Deliverables ... 17
 3.1 Configuration ... 17
 3.2 Client .. 18
 3.3 Data Repositories Integrator .. 19
4. Design and Development ... 20
 4.1 Timeline .. 20
 4.1.1 Senior Design I -- Accomplishments 20
 4.1.2 Senior Design II -- Accomplishments 21
 4.1.3 Senior Design III -- Accomplishments 23
5. Proof of Design .. 24
 5.1 Dashboard ... 24
 5.2 Search .. 26
 5.3 Applications .. 30
 5.4 Attributes .. 32
 5.5 ML Server Profiles .. 34
 5.6 Ad Hoc Conditions .. 36
 5.7 Data Imports ... 38
 5.8 Security .. 41
 5.9 Logs ... 42
6. Testing Procedures ... 43
7. Conclusions and Recommendations ... 45
\textbf{List of Figures}

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Taxonomy of The ITD core functions4</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Senior Design I tasks and schedule</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Senior Design II tasks and schedule</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Senior Design II tasks continued</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Senior Design III task and timeline</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Default view of The ITD’s dashboard</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>The ITD’s Relationship status for a ML application</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>The ITD’s dashboard Ad Hoc Conditions</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>The ITD’s search screen</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>The search screen after selecting an application</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>Search screen bound control</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>Search results for a ML application</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Default application screen</td>
<td>31</td>
</tr>
<tr>
<td>14</td>
<td>Add or remove attributes from an application</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>Attributes page</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>ML Server Profile</td>
<td>34</td>
</tr>
<tr>
<td>17</td>
<td>ML Server Profile</td>
<td>35</td>
</tr>
<tr>
<td>18</td>
<td>Ad Hoc Conditions</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>Data Imports top of page</td>
<td>39</td>
</tr>
<tr>
<td>20</td>
<td>Second half of data imports page</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>User groups and their permission</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>Log Search</td>
<td>43</td>
</tr>
</tbody>
</table>
Abstract

The IT Dashboard (ITD) is a software tool that monitors components in a network, finds missing components in enterprise level software, and enforces business rules for the network components. The ITD contains data repositories for each enterprise level application, and for every server in the network. The enterprise level applications provide information about their configuration, and the ITD monitors their configuration to determine if it is missing a component, and if the component’s details are correct. The administrator imports the data from the enterprise software application, and links each applicable server to the application. The ITD monitors the CI, and prompts the user if a server is missing or if information about the server changes. The ITD’s primary goal is to ensure each application’s configuration is correct, and includes, or does not include, every server in the network.
The IT Dashboard

1. Statement of the problem

 Research IT Services supports a large wide area network for the Bio Medical Division in Children’s Hospital. The personal computers and servers in the network contain very important material including medical records, sensitive research information, and proprietary internal documentation. All of the information supports, or assists with saving lives at Children’s Hospital, and is nearly impossible to replace if it is lost. Ensuring all of the information is secure, redundant, available, and credible is a key task for Research IT Services.

 The network includes both virtual and physical machines, and the IT staff uses many different software packages to monitor, audit, backup, and document the network. Some of the software packages include VMware Tools, Symantec Netbackup, HP Sim, NetScout, WSUS, and Solsoft. All of these applications have a heterogeneous configuration, but their settings need to reflect the network. The hospital’s network does not stop growing, so manual audits of the software are only accurate for a short amount of time. Standardizing the software that supports the network is an impossible task for a human to overtake, so a technical solution is necessary for the Research IT Services to comply with industry standards.

 Currently, Research IT Services is experiencing growth of nearly one terabyte per week. The hardware environment is also converting from physical servers to virtual machines. The growth of their enterprise requires constant updates to their supporting software, so their applications accurately echo their enterprise. When there is a change to the network (IP/FQDN, OS, Firewall, etc…) each piece of software must reflect the change, so the configuration is consistent. Missing an application or forgetting to replicate a change throughout the enterprise
can have devastating effects. Here is a list of potential disasters which can result if the network applications do not have the correct configuration:

- **Lost Data**
 - The backup strategy must include all of the servers, and if the backup software does not backup a server consistently data can be lost if the server fails.

- **Loss of service**
 - Research IT Services wipes/reuses servers based upon their label which can lead to a loss of services if the server does not have the correct label.

- **Prolonged troubleshooting**
 - The administrator must gather information from multiple sources when an application is not up-to-date which leads to longer downtimes.

Today, Research IT Services tracks all of the changes using several inaccurate and unreliable operations. First, the administrator’s have standard operating procedures (SOP) to follow, but the procedures do not include all of the applications, and are unreliable because of the human element. The administrators have missed applications in the SOP, and the results were disastrous. Second, manual enterprise audits to evaluate the servers and applications, but these audits are not reliable because of the human element, and do not maintain accuracy because the enterprise is in the constant rate of change. Lastly, the administrators use an Excel spreadsheet to track all of the changes. However, the solution is futile because of the project’s scope, and Excel is not powerful enough tool to provide the user’s needs.

The human element in their system configuration tracking is producing errors, inconsistencies, and failures in their enterprise. The current methodology for managing the information related to the components in their enterprise has many security risks, is inefficient to
manage, unreliable, and creates unnecessary overhead. Research IT Services needs a fully integrated, three tier solution, which incorporates the needs of their users, and is powerful enough to collect information from the entire enterprise.

2. Description of the solution

The proposed solution is a system that provides a dashboard for all the issues related to the IT Research Services. The IT Dashboard allows the administrators to ensure consistency throughout the enterprise, prevent disasters, reduce time and cost, and ensure compliance. The IT Dashboard (ITD) uses federated data from multiple sources to evaluate the network servers and applications. ITD is a single reference point for all software elements that control the network, and allows an administrator to understand their enterprise by providing a real time list of servers and attributes, and their relationship with the support software. To provide the high-level control and insight, ITD uses some of the most powerful technologies available, including Microsoft SQL Server 2008, Microsoft .Net 4.0, and Microsoft Server 2008. The ITD monitoring service uses current technology to locate all of the servers in the enterprise, and pool resources so the ML of servers is unquestionably complete. After building the ML of servers, ITD gathers data from the enterprise software that manages the wide area network. It analyzes all of the metadata to provide an overview of the network, and the configuration of each enterprise level application. The ITD system is a multi-tiered solution that integrates with the Research IT Services’ network applications, and provides the administrators with an up-to-date look of their network. The application’s goal is to eliminate time, costs, errors, and allow Research IT Services’ to comply with networking standards. Reducing or removing these elements allows Research IT Services to provide the most optimal environment for their users.
2.1 Architecture

ITD’s framework is based upon a configuration management database (CMDB) which is a method of tracking changes in an IT environment. CMDB is a core component of The Information Technology Infrastructure Library (ITIL). ITIL is a set of concepts and practices for Information Technology Management, Information Technology development and IT operations. Strictly speaking, the ITIL CMDB contains a record of the expected configuration of the IT environment, as authorized and controlled through the change management and configuration management processes. A CMDB collects data from multiple sources and provides IT staff a unified source to view the information, and relationships between the information. Some of leaders in creating a standard in federated CMBD architecture include Microsoft, Fujitsu, HP and IBM. These standards revolve around using a consistent architecture, so the solution is viable in many different scenarios. A CMDB Without consistency, a solution is limited to the proprietary environment. Figure 1 shows the core functions of The IT Dashboard.
The ITD Solution

<table>
<thead>
<tr>
<th>User Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI Administration</td>
</tr>
<tr>
<td>Reporting and Querying</td>
</tr>
<tr>
<td>Visualization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security -- User Access Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Management</td>
</tr>
<tr>
<td>Reconciliation</td>
</tr>
<tr>
<td>Synchronization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security – Data Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Repositories Integrator</td>
</tr>
</tbody>
</table>

Figure 1 shows each main component of The ITD, and the following paragraphs explain the parts.

2.1.1 User Interface

The user interface is the central access point for most users, and is provides several different levels of interaction with The ITD. Anyone with authorization to The ITD, and depending on the level of access, can interact with the product in the following ways:

- Administering the ITD environment which may include adding new applications, defining attributes, and identifying warnings.
- Researching the relationships between information and discovering inadequacies between applications.
• Querying The ITD to identify changes in the environment, or plan future additions/subtractions to the enterprise.

2.1.2 Security -- User Access Control and Data Protection

User profiles and groups provide all of the access limitations to the product, and add a level of restrictions to administrative functions, application information, and access to sensitive material. The system runs on an intranet, so access from the outside is relatively limited. However, NTFS/Share permissions, SQL permissions, and SSL Certificates are necessary to provide the proper security.

2.1.3 Data Management

The ITD has the ability take information from several different sources and reconcile the information, so the information is presented consistently. The ITD provides the necessary services to subscribe to data repositories, and collect data in a real time fashion so its information is always accurate.

2.1.4 Data Repositories Integrator

A data repositories integrator provides the interface to The ITD, and allows the different data providers a means to communicate and provide data. These hooks communicate through application programming interfaces, XML, Web Services, or direct custom integration.

2.1.5 Data Repositories

The data repositories, or configuration items, are the applications that provide all of the CI to The ITD. These are the enterprise level software packages that The ITD is tracking, and providing feedback to the user for.
2.2 Specifications

The services to support the above architecture includes the following:\(^5\)

- Federated CMDB Services, which provide for
 - Administration of the Federated CMDB
 - Resource federation, including the registration of resources by data repositories
 - Query of the reconciled resources and their relationships in the Federated CMDB
 - Subscription and notification for both resource and metadata changes in the Federated CMDB

- Data Repository Services, which provide for
 - Query of the resource records and relationships managed by the data repositories
 - Subscription and notification for resource changes in the data repositories

The ITD monitoring service locates applications that contain information on all of the servers in the enterprise. ITD can use one of many applications, and its schema provides the users with a simple one-to-one view of each list of information, or a combination of views which cross-reference each list to find disparities. ITD builds a ML of servers and their attributes that are in the wide area network. The ML comes from multiple applications, and the administrator has the ability to select the applications that have the most up-to-date information, so building the ML guarantees to have all of the servers in the enterprise. These applications can include asset tracking software that contains all of the hardware in the enterprise, virtualization software that controls all of the virtual machines in the enterprise, or any application that has the ability to
export information about the assets that are being tracked in the ITD. Research IT Services has two applications that have all of the servers in the enterprise, and these applications can provide attributes about the servers. The following are the two applications for building the ML applications at Research IT Services:

- VMware vCenter
 - vCenter is the master controls for the entire BMI virtual network
 - Holds a part of the ML of servers in the enterprise
- RT Asset Tracker
 - Manages all of the assets of the entire enterprise
 - Holds a part of the ML of server in the enterprise

VMware vCenter controls the entire virtual environment for everything in the Children’s Hospital network, so it contains every virtual machine that exists. The RT Asset Tracker monitors every hardware asset in the enterprise, so it contains every piece of hardware that connects to the enterprise. Therefore, retrieving data from both pools of information guarantees ITD is working with a complete list of servers.

Next, ITD creates data repositories to build a useful source of information. The master list (ML) cross-references the configuration information (CI) to find inconsistent configurations, and CI application look for the matching server in the ML application to determine if the server is missing. This dual relationship finds any missing servers in the enterprise software, and any orphan servers that no longer exist in the ML applications. Here is a list of potential applications and their means to provide information:

- Symantec NetBackup
- Enterprise level application that provides a single console to backup and restore all of the machines in the Children’s network.
 - Ability to provide data in the form of a comma separated file

- IPAM
 - Manages all of the IP Addresses, DHCP, and DNS in network.
 - Ability to track the servers in half of the network
 - API to provide data

- Log Logic – Security Change Manager Reporter
 - Firewall management software that controls all of the firewall rules for each server.
 - API to provide data

- Q1 Labs – Radar Log Manager
 - Collect, archive, and analyze network and security event logs.
 - API to provide data

- Zenoss
 - Uses SNMP to pull performance data from servers.
 - API to pull data

These data repositories use the data repositories integrator to communicate with The ITD, and provide information that relates to the list of servers in the ML. The ITD compares the information, and sends notifications to the user when there are inconsistencies.

Each server in the ML has a server profile that links the server to one or many CI application using an attribute. The ML and CI applications link using the server name from the ML, and the server identifier in the CI application. The server identifier in an application must
be unique for that application. The value of the CI’s attribute does not have to be an exact match to the ML’s server attribute, and a user can enter an artificial value to link the applications.

2.2.1 User Profiles

The IT Dashboard’s design includes two user group types who have different access to the functionality in the Web site. The user profile types include Administrators that have full access to all of ITD’s functionality, and the Data Owners that do not have access to changing the ITD’s configuration.

The IT Dashboard’s design and intended use incorporates high-level technical concepts, and access information from enterprise level applications. The ITD’s Administrators have access to these applications, and typically administer those applications too. The Administrators have access to the following core features:

- Dashboard
- Search
- Applications
- Attributes
- Relationships
- Ad Hoc Comparisons
- User Groups
- Logs
- Data Imports

Research IT Services has full time IT personnel that are responsible for administering and maintaining the IT Dashboard. Future maintenance and administration can include the following functionalities: HTML, .Net, T-SQL, and CSS.
The Data Owners are the network users, or IT personnel, that know the information in each enterprise level application, and can verify the ITD’s accuracy. These users need access to the Dashboard functionality so they can determine if there are any issues with the enterprise level application, and can use the Search feature to investigate the ITD’s information. The Data Owners have the permission to view the information the ITD gathers from the data repositories, but do not have permission to change, update, or delete the information.

3. Deliverables

The ITD deliverables include adding applications, comparing data, showing alerts to the user, importing data, and creating users. Combining each of these components provides the user with a complete configuration management database. The following paragraphs include explanation of the feature in the ITD.

3.1 Configuration

The ITD configuration module allows an administrator user to add, edit, and delete a new storage container for the data coming from the enterprise level applications. The ITD stores data for two different applications including MLs and CI applications. These applications have attributes that are characteristics of the applications, and define the data they contain. After the applications have information, the ITD compares the CI applications with the ML, and displays any inconsistencies on the Dashboard. The ITD administrator configures the relationships between the ML and CI applications, and the ITD uses the alert definitions when comparing the application’s data.

- Application ML – A ML is the primary source of information, and includes all of the hardware that the ITD monitors. The ML comes from multiple applications, and the
administrator has the ability to select the applications that have the most up-to-date
information, so building the ML guarantees to have all of the servers in the enterprise.

- Application CI – The ITD cross-references the data from these applications with the ML
to find inconsistent configurations. These applications may include network backup
applications, firewall software, and other enterprise level applications.

- Attributes – The attributes are the containers for the data each application can contain.
 Each attribute has a data type, name, and description.

- Server Profile – Each server in a ML has a server profile that links the server to one or
 many CI applications. The server profile consists of a ML’s connection to a CI
 application. The link between a ML and CI application can be an exact match, or the
 user can create a link with an artificial link.

- Ad Hoc Comparison – A user can create a custom relationship to enforce business rules
 between a ML’s data and CI data.

- Alerts – The alerts are comparisons between the data in the MLs and CI lists. The user
 configures the alerts that include selecting a ML’s attribute, and a CI attribute. The ITD
 monitors the lists, and alerts the user when it finds an inconsistency.

- User Groups – An administrator of The ITD can add user groups from Active Directory,
 and apply administrator or data owner permissions.

3.2 Client

The ITD Client provides the user with several different views of the information inside
the database. A user can query the database and view the records for a ML and a CI list, or
quickly glance at the dashboard feature that displays a summary of all the lists. The client also
displays the alerts to the user, and allows the user to silence an alert if it is a known difference.
A user can also investigate and troubleshoot The ITD by using the system logs, which is available through the client.

- **Query The ITD** – The can choose between searching through a ML or a CI list. After selecting an application, the user can enter data into the applicable attributes, and search the database for the parameter.

- **Manage Alerts** – When The ITD finds an inconsistency, it flags the problem for the administrator, and highlights the information so the user can address the issue. The user can silence an alert while they are taking action, or if the problem is a known issue.

- **Dashboard** – The primary view of The ITD is the dashboard utility that provides an overview of the system. The dashboard summarizes all of the applications, and displays the total alerts.

- **Log** – The logs show the user past actions made by The ITD including imports, user interaction, and system errors.

3.3 Data Repositories Integrator

The data repositories integrator (DRI) provides a pipeline for information into The ITD. The DRI uses Windows Communication Foundation to communicate with The ITD, and provides the applications a way to import data. There are several methods to import data including a manual import, scheduled import, or direct API import.

- **Manual Import** – The manual import allows a user to insert data into The ITD by choosing the appropriate application, and mapping the attributes to the import file. The import file must be a separated file, and have a consistent format.

- **Scheduled Import** – The scheduled import is a job that runs a saved manual import, or a scheduled direct API import.
• Direct API Import – The API import is a custom link between an external data repository and The ITD that communicates directly to the database using a web service.

4. Design and Development

The following sections describe the project’s timeline, and each quarter’s tasks and accomplishments.

4.1 Timeline

The ITD’s timeline covers three different classes including Senior Design I, Senior Design II, and Senior Design III. The Senior Design I’s primary goal is a problem and possible solution to the problem. Senior Design II’s outcome is a design for the solution, and a prototype with basic functionality. The project ends in Senior Design III, and a fully functional solution is expected. The following is a breakdown of each quarter, and the tasks accomplished.

4.1.1 Senior Design I -- Accomplishments

Senior Design I’s goal was to find a problem, define the problem, and propose a solution to solve the problem. I accomplished the following during Senior Design I:

• Research Configuration Management databases

• Analyze appropriate technologies

• Interview customer

• Draft a high-level architecture for The ITD

• Create a proposal and oral presentation
The tasks for the first quarter include discovery of configuration management databases, SQL server, and interviews with Research IT Services to gather facts about the problem. The following are the accomplishments for the autumn quarter of senior design:

![Figure 2 Senior Design I tasks and schedule](image)

The order of accomplishments for the first quarter starts with researching configuration management database (CMDB) technologies and methods. CMDB is a method to gather information from different sources, and display the CI to the user. CMDB can use many different protocols and technologies to gather and display the information. The technologies analyzed for The ITD included SQL Server, .Net, IIS, and CMDB recommended practices.

4.1.2 Senior Design II -- Accomplishments

Designing The ITD took an underestimated amount of time, and that slowed the start of development. The most difficult part of The ITD project was including all of the customer’s requirements into the project, and allowing enough time to finish development. The following are the accomplishment for the winter quarter of senior design:

- Continue research of CMDB
- Interviews with customer
- Design The ITD
- Start development

The customer interviews structured the design for the database, and the graphical user interface for The ITD. The start of development stalled due to some scope of the project, and reconfiguring some of the architecture. The following is the task and timeline for Senior Design II:

![Figure 3 Senior Design II tasks and schedule](Image)
4.1.3 Senior Design III -- Accomplishments

The following are the accomplishments for the spring quarter:

- Develop database
- Finish web pages
- Deploy

During Senior Design III there was a change requested by the customer that included an additional relationship for the data in the ITD. This change request added a considerable amount of time to redesign and development. Here the list of tasks and timeline for Senior Design III:

The additional time to redesign the change request is included in the business rules and dashboard time.
5. Proof of Design

The proof of design section describes each deliverable and the challenges encountered during the project. The sections are divided into The ITD’s core functionality, and explain how each component works to accomplish the goals and deliverables for the project.

5.1 Dashboard

The ITD dashboard summarizes all of the information gathered from the enterprise level applications, and the information’s relationship to the servers in the network. Figure 6 shows the default view of The ITD’s Dashboard.

![Figure 6 Default view of The ITD’s dashboard.](image_url)
The ITD’s dashboard, by default, does not display any information. However, after creating applications, attributes, relationships, and importing data, the dashboard displays information like Figure 7. Creating applications, attributes, relationships, and importing data have their own sections that describe their functionality.

Figure 7 shows the relationship for each server in the ‘All Assets’ ML application, and the configuration of the ‘HP SIM’ application. The ITD stores a list of servers for the ‘All Assets’ application, and the configuration of the ‘HP SIM’ application. If the server cannot be found in the ‘HP SIM’ application, the cell is marked red for an alert, but if the server is in the configuration for ‘HP SIM’ the cell is green. A cell marked as red is a trigger for the administrator to troubleshoot the CI, and determine why the server is not in the application.

The ITD’s dashboard also shows the status of the Ad Hoc conditions configured by the user. Further explanation for the Ad Hoc Conditions can be found in their section.
monitor additional attributes for the ML and CI applications, and the dashboard shows the status of the relationship. Figure 8 shows an example of the Ad Hoc Conditions for the ‘All Assets’ application.

Figure 8 The ITD’s dashboard Ad Hoc Conditions

The user configures the Ad Hoc Conditions and typically includes attributes other than the server identifiers. Similar to the ML and CI relationships, the Ad Hoc Conditions have color-coded alerts. The following is a list of possible alerts for the Ad Hoc Conditions:

- **Black** – A black cell alert occurs when The ITD cannot find a CI server in a ML application.
- **Red** – A red cell alert occurs when the ad hoc condition is false.
- **Green** – A green cell alert occurs when the ad hoc condition is true.

A black or red alert is a trigger for the system administrator to troubleshoot the CI, or the ML application further.

5.2 Search
The ITD’s search screen has many functions, and allows the user to interact with each application and the information it contains. The user has two options to start a search. First, the user can select to search in a ML or CI application. Second, the user can choose to supply search criterion, or choose to search a different application. Figure 9 is the default search screen.

When the user clicks a ML or CI application, The ITD displays the attributes for the application, and the user can choose to supply data for one or all the attributes before submitting the search. Figure 10 shows the search screen after selecting an application.

Figure 9 The ITD’s search screen.
Figure 10 The search screen after selecting an application.

Each attribute is bound to the parameters selected by the user when they are creating the attribute. If the attribute is selected to be a date field, the user must select a date from a date control. Figure 11 shows an example of a date attribute and the date search control.
Figure 11 Search screen bound control

The other attribute types, including varchar and integer have their own bound definitions too. A varchar attribute can have a length parameter, so the textbox is bound to the definition, and the user can only enter that amount of characters. The integer search attributes only accept integer values into the textbox. Further explanation of attributes can be found in the attributes section.

The search results show the servers in the chosen application, having the same criterion entered by the user. Figure 12 shows the search results for a ML application. This example shows all of the servers in the ‘All Assets’ application because no search criterion is used.
Figure 12 Search results for a ML application.

Figure 12 shows the results for a ML application. The first column is always the server name or server identifier, and each server name is a hyperlink that allows the user to access the server’s server profile. The user has the ability to delete a server from the ML application using the delete button in the first column. Deleting a server removes the server and server profile.

5.3 Applications

The ITD application is the main storage container for any software application the user wants to monitor. The application can be a ML or CI, and this determines how The ITD uses the information, and how the user can interact with the data.

The ML application is the source of all servers in the enterprise. The ITD can store unlimited amount of ML applications, so the use can use multiple software packages to create a ML. The multiple software applications can all import into a single ML or across multiple MLs. Figure 13 shows the default application page.
From the default screen that Figure 13 shows, the user can add, edit, or update an application. The user completes the application form and clicks create. The applications are stored in their applicable grids below the form.

The grids have an edit, delete, and select button. The edit button allows a user to change the application display name and description, delete remove the application from The ITD, and the select button allows the user to add or remove attributes from the application. Figure 13.0 shows adding and removing attributes from the application.
Figure 14 Add or remove attributes from an application

Figure 14 shows the selected application and its attributes. The user can select the attribute from the right grid, click the button that points to the right, and the application can then store data in the attribute. The data import section covers storing data in an application. If the user needs to remove the attribute from the application, the user can select the attributes on the right grid, and click the button pointing to the left.

5.4 Attributes
The attributes in The ITD define the application, and dictate the type of information The ITD can store for the application. The user can create one attribute, and use the attribute for many applications.

Figure 15 shows the attribute page.

Figure 15 Attributes page

Figure 15 shows the default attribute page with some attributes in the Available Attributes grid. To create a new attribute, the user enters a name, description, and chooses a data type. The VarChar data type uses a maximum length definition to limit the length of its values. The data type is important for data validation, and dictating the type of data the user can use as search criterion. The user has the ability to delete the attribute using the delete button in the first column of the Available Attributes grid.
5.5 ML Server Profiles

Every ML server has a server profile. The server profile contains the relationship the server has with a CI application, relationship status, relationship alert, and a custom value. The server profile configuration starts at the ML Profile page, where the ML application's relationship to a CI application is established. Figure 16 shows the ML Profile page.

Figure 16 ML Server Profile

The “ML Server Profile” page allows the user to add a relationship between a ML server application and a CI application. After reconciling the relationship, the dashboard and search pages show any alerts.
There are cases when a server is in a ML application, does not need to be in a CI application, but there is a relationship between the two applications. This situation causes an alert, but the user knows the server is not going to be in the CI. The ITD anticipates this situation and allows a user to disable the relationship at the server level. To disable the relationship, the user can search for the server on search page, and use the server name’s hyperlink to access the server’s profile. Figure 14.0 shows an example of a ML profile.

Figure 17 ML Server Profile
The ML server’s profile in Figure 17 shows the relationship between the server and the CI application. The user can control the relationship for each server in a ML application, by disabling the relationship status, or supplying a customer value.

When the user reconciles a relationship between ML and CI application, only the servers in the ML application that have a relationship status set to true (checked) are processed to look for missing servers. The servers that have a relationship status of true can use their ML server name to create a relationship with a CI application, or use a custom value. Not all enterprise level applications identify a server the same way. While some may store a fully qualified domain name, others store an IP address to identify servers. The user has the ability to link a server in a ML application to a server in a CI application using values that are not exact equals. When the relationship reconciles, instead of using the server name, The ITD uses the custom value.

5.6 Ad Hoc Conditions

Ad Hoc Conditions perform two functions. First, Ad Hoc Conditions enforce rules for CI’s attributes. Second, the conditions also apply a reverse search for the server in a ML application. Figure 18 shows the Ad Hoc Conditions page.
A user can create an Ad Hoc Condition for a ML application, and any CI application the ML application has a relationship. The user selects the ML application from the “Choose ML” drop down list, and the relationships appear in the “ML Relationship” grid. These CI applications are available for an Ad Hoc Condition. Next, the user selects an attribute of the ML application, types a value or leaves the value blank, selects a CI application, one of the CI’s attributes, and types a value or leaves the value blank.

When The ITD reconciles the Ad Hoc Condition, it enforces the condition in three different ways depending on the Ad Hoc’s attribute values. The user can choose to leave the “ML Attribute Value” and “CI Attribute Value” blank, or supply values for both. When the values are blank, the ML server and CI server values must match. When the user supplies values for both “ML Attribute Value” and “CI
Attribute Value”, if the ML Server attribute value equals the Ad Hoc’s “ML Attribute value” then the CI Server attribute value must match the Ad Hoc’s “CI Attribute Value”. If the server in the CI application does not exist in the ML application, the Ad Hoc Condition does not execute. Additional information for the Ad Hoc Condition alerts is in the Dashboard section.

5.7 Data Imports

The data imports allow a user The ITD to ingest data from the enterprise applications, and store the data in the applications and attributes. To enjoy success after the implementation of the configuration management database, auto discovery of the CIs is important and not only that, all changes should be monitored closely.10 Figure 16.0 and 16.1 show the data imports page.
The top of Figure 19 shows the configuration portion of the data imports page. The imports contain a name, description, application, import type, column delimiter, import affect, import file, and column mapping. The following list defines the features for a data import:

- **Name**
 - The name must be unique for each import
- **Description**
 - Overview for the import
- **Application**
 - The target application for the information in the import file
- **Import Type**
 - The data can come from a text file or through the API
• Column Delimiter
 o The delimiter separates the values in import file
• Import Affect
 o The import can insert new data, or update the data already in the application using the server identifier.
• Import File
 o The import file contains all of the information in a delimited format
• Column Mapping
 o The link between a column in the import file and a target attribute in the application

The user can select the “Run Immediately” when they create the import, and the data import runs after creating the import. The data import triggers any relationships and Ad Hoc conditions, so the user can view the results of the import immediately. Figure 20 is the second part of the data imports. The All Imports grid renders all of the available imports, and allows the user to delete or run the import.
Figure 20 display the available imports that the user creates using the configuration options at the top of the page. There is no limit to the number or time a user can run an import, but a unique constraint in the database prevents an application from containing duplicate server identifiers. If the user clicks run multiple times without changing the content in the import file, The ITD finds and discards any duplicate server identifiers and logs the event.

5.8 Security

The ITD’s security allows or does not allow a user to access the website based upon their Active Directory User Group. The ITD queries Active Directory for all user groups, and allows the user to choose which groups can have access to the website. The Active Directory’s
permission to The ITD is stored in the ITD database. Figure 21 shows the list of available Active Directory user groups, and their permission to The ITD website.

![User groups and their permission](image)

Figure 21 User groups and their permission

The user access checkboxes in the grid shown in Figure 21 dictate access to The ITD for each user group. The user group has access to The ITD if the checkbox is checked, and does not have access if the checkbox is unchecked.

5.9 Logs

The ITD’s logs contain information about the user’s interaction with the system, and the import’s results. There are two different log types, user access and import, and the result of the
interaction can be success or failure. The user can search the logs by log type, date of the log entry, and the result of the interaction. Figure 22 shows the result of a log search.

![Log Search Image]

Figure 22 Log Search

The search results in Figure 18.0 show the log entries for any errors during an import. Import and User are the two available log types, and Error and Success are the two log actions in the log actions drop down list. The user can select any combination of log type, entry date/time, and log action to search the logs, or leave all criterions blank to retrieve all entries in the log.

6. **Testing Procedures**
The testing methods used for The ITD include unit, system, and acceptance. The unit verified individual pieces of functionality to ensure all of the features work as expected. The system testing validated The ITD as a whole, and to guarantee the software delivers the desired results. Lastly, the customer completed user acceptance testing, and ensured all of the components meet their requirements.

During development, all functions and procedures underwent unit testing to ensure the result of their processing was correct. The unit tests derived from the design document, so they ensured the solution implemented accurately. The goal of unit testing was to isolate each part of the program and show that the individual parts are correct. Unit testing found the problems early in the development process, so corrections occurred with little delay. Additionally, unit testing by definition only tests the functionality of the units themselves. Therefore, it does not catch integration errors or broader system-level errors (such as functions performed across multiple units, or non-functional test areas such as performance).

System testing tests not only the design, but also the behavior and even the believed expectations of the customer. A typical system testing for The ITD included create a new application, attributes, ad hoc conditions, and importing data. Here is a list of tests used to verify the system:

- Graphical user interface (GUI) testing
- Exception testing
- Stress testing

The GUI tests are from the design document, and the recommendations from the user. The developer completed the GUI testing and the end users to ensure the GUI meet the design standards. One difficulty of GUI testing is finding a novice user, but for The ITD the customer
acted as the novice user throughout development to verify the design. Exception testing refers to the anticipation, detection, and resolution of programming, application, and communications errors. The tests included creating known failure scenarios and ensuring The ITD recognized the error, and takes the appropriate steps to log and notify the user. The stress testing focused on the data import and the dashboard to ensure response times are appropriate. The stress test for the data imports used data more than ten times the expected size, and Microsoft’s Performance Monitor recorded the measurements. Microsoft’s Performance Monitor also measured the time to retrieve the information using The ITD’s dashboard page.

User Acceptance Testing (UAT) is a process to obtain confirmation that a system meets mutually agreed-upon requirements. The customer took part in acceptance testing to ensure all of the functions meet the requirements in the design document. During user acceptance testing, the tester configured The ITD for the customer applications, and imported live data into the system. User tests, which are usually performed by clients or end-users, do not normally focus on identifying simple problems such as spelling errors and cosmetic problems, nor showstopper defects, such as software crashes; testers and developers previously identify and fix these issues during earlier unit testing, integration testing, and system testing phases. The user verified each component’s results are correct, and The ITD worked as detailed in the design document.

7. Conclusions and Recommendations

7.1 Conclusions

Research IT Services provided the idea to create The IT Dashboard to solve problems with maintaining a network and enterprise software. The IT Dashboard allows the users to create the necessary repositories that store information about their network, and create relationships that highlight any issues with their software’s configuration. Testing concluded at the end of Senior
Design III, and results were favorable. The ITD solves the issues of maintaining a reliable network configuration, and alerts the user when the configuration is not correct.

