VoIP Trunking with Session Border Controllers

By

Chris Mackall

Submitted to
the Faculty of the Information Technology Program
in Partial Fulfillment of the Requirements for
the Degree of Bachelor of Science
in Information Technology

University of Cincinnati
College of Applied Science

June 2011
VoIP Trunking with Session Border Controllers

by

Chris Mackall

Submitted to
the Faculty of the Information Technology Program
in Partial Fulfillment of the Requirements
for
the Degree of Bachelor of Science
in Information Technology

© Copyright 2011 Chris Mackall

The author grants to the Information Technology Program permission
to reproduce and distribute copies of this document in whole or in part.

___ __________________
Chris Mackall Date

___ __________________
John Nyland, Faculty Advisor Date
Acknowledgements

This author would like to thank Verizon Business for providing them time with their engineers for lab testing and configuration certification. This author would also like to thank Acme Packet Inc. for providing trial equipment for lab testing.
Table of Contents

Section Page
Acknowledgements i
Table of Contents ii
List of Figures iii
Abstract vi

1. Project Description and Intended Use 1
 1.1 Organization and Scope 1
 1.2 Statement of the Problem 2
 1.3 Description of the Solution 3
 1.3.1 User Profile 4

2. Design Protocols 4
 2.1 Technical Requirements 4
 2.2 Physical Lab Layout 7
 2.3 Logical Lab Network Layout 9

3. Deliverables 10

4. Project Planning 11
 4.1 Budget 11
 4.2 Timeline 12
 4.3 Software 12
 4.4 Hardware 12

5. Proof of Design 13

6. Testing 58

7. Conclusions and Recommendations 60
 7.1 Conclusions 60
 7.2 Recommendations 60

Appendix A. 61
List of Figures

Figure 1. Current call flow 3
Figure 2. Centralized trunking call flow 6
Figure 3. Physical lab layout 8
Figure 4. Logical lab network layout 10
Figure 5. Original timeline 12
Figure 6. Inbound call originator release 15
Figure 7. Inbound call answering party release 16
Figure 8. Inbound call cancel 17
Figure 9. Inbound call rejection 18
Figure 10. Caller-ID packet information 19
Figure 11. Call waiting trace 20
Figure 12. Inbound fax 21
Figure 13. Inbound Call with Blocked Caller-ID 22
Figure 14. Busy Signal 23
Figure 15. No answer expiration 24
Figure 16. Long duration inbound call 25
Figure 17. Outbound call originator release 26
Figure 18. Outbound call answering party release 27
Figure 19. Outbound call cancel 28
Figure 20. Outbound call 1+ 29
Figure 21. Outbound international call 30
Figure 22. Directory assistance 5551212 31
Figure 23. Directory assistance 411 32
Figure 24. Directory assistance 1411 33
Figure 50. MAC address table pre-failover 57
Figure 51. MAC address table post-failover 58
Abstract

VoIP Trunking with Session Border Controllers was a proof of concept project designed to illustrate a new telephony architecture that can significantly reduce the cost of telephony services for large distributed organizations. VoIP trunking is voice over Internet Protocol services offered by telephony service providers. VoIP trunking offers the ability for a company to have one (or several) large telephony service provider connection(s) in a data center rather than a small one at each remote location by using IP data networks. This large connection lowers cost because it can be shared by many locations. This data center connection needs to be secured just as any other gateway in/out of an organizations network. This security is provided by a session border controller. This paper will document a VoIP trunking environment using Verizon Business BEST (Burstable Enterprise SIP Trunking) services, an Acme Packet Net-Net 4500 session border controller, and a Nortel Networks Business Communication Manager 450 phone system. Test cases show that all the features of the legacy connections still work and that the communications to the carrier do not expose the organization to an unacceptable security risk.
1. Project Description and Intended Use

Telephony services are a set of technologies that just about every organization utilizes today. The cost associated with using telephony services can be a major recurring budget item for large organizations, especially those with many distributed locations. This network project focused on a migration from a traditional method of accessing the Public Switched Telephone Network (PSTN) to a newer method utilizing VoIP trunking in order to reduce operational cost.

1.1 Organization and Scope

The specific organization this project was intended for will remain anonymous. Specific technological details, budgets, and other information are intentionally excluded or worded in generic terms.

The target organization for this proposal is headquartered in Ohio, with dozens of divisional offices, and has thousands remote retail locations throughout the country. Since the offices each have unique requirements they will be out of scope for this document. The focus will only be on the more standardized retail locations.

This project was a proof of concept implementation of VoIP trunking for a retail location. The first setup was a lab configuration. The original plan was to also implement this is production if company funding was available before the end of senior however this was not the case. Funding has been delayed and the production implementation will not be until this summer when senior design has already ended.
1.2 Statement of the Problem

Each retail location has a wide range of technology in order to support store applications. As part of this technology each location has a data T1 that connects its LAN to the company MPLS wide area network. With normal operation this data T1 only uses around 10% of its total bandwidth with peak usage around 30%.

The current telephony infrastructure is in a fully distributed architecture. Each location has an IP enabled Private Branch Exchange (PBX), or more simply put an IP enabled phone system. This PBX currently uses digital handsets (phones). It also has as a Primary Rate Interface (PRI) T1 connection to a carrier for PSTN access. Just as a reference for telephony jargon, the connection to the outside from the local PBX is call trunk side, vs. line side which is the local side of the PBX. So this PBX uses the PRI for trunk access and digital handsets on the line side. PRI T1s use Time Division Multiplexing (TDM) to split the T1 into 23 voice channels in order to support a max of 23 concurrent calls to the PSTN. On average these locations only use a few concurrent calls and peak at a max of 12 concurrent calls during busy hour. The call flow for remote locations in their current state is shown in Figure 1. The PBX currently only uses IP connectivity for remote administration. The IP enabled PBXs are capable of using IP based trunking known generally as VoIP trunking. To recap, and illustrate the problem, each remote store location has two T1s going to it that are both underutilized. This is extra unused bandwidth represents wasted monthly expense for the company.
1.3 Description of the Solution

The solution was that the voice traffic be combined on the data T1 in order to provide a lower cost of operation by only having one T1 per location.

With removing the voice T1 each remote location will no longer have a direct connection to a PSTN carrier. Without the connection to a PSTN carrier locally there must still exist PSTN access somewhere in the network. This connection will be maintained in a data center. When the access to the PSTN is aggregated for many locations there are many financial benefits. Supporting traffic over a few very large connections is less expensive than buying many small connections. Also when calls from multiple locations are aggregated the overall number of concurrent call paths required to support call volumes is decreased significantly. This is especially true for locations that have the same busy hour time but are in different time zones. With a lower number of total concurrent call paths being leased there is again a major cost reduction in total.
recurring spend. The Design Protocols section will outline how this was accomplished technically.

1.3.1 User Profiles

Assuming the project is implemented correctly the end users will never know that the project took place. The main users of impact are the systems administrators and support personnel. This author had gained knowledge of the Acme Packet SBC. This author will then train the rest of the level 3 support team on general call routing changes and support when this infrastructure is built in production. The level 2 support personnel will be trained on determining if a location has been migrated to VoIP trunking yet and escalate to level 3 for related issues.

2. Design Protocols

2.1 Technical Requirements

With the access to/from the PSTN being moved from the remote location to a data center there are infrastructure changes required in order to accommodate this call flow. These components are the centralized PSTN gateway, a session routing platform, and quality of service enabled on the data network.

2.1.1 PSTN Gateway

In the distributed architecture there is a direct PSTN gateway attached to each remote locations PBX (the PRI connection). In the newer centralized model all the trunking resides in the datacenter as one large (redundant) connection. However, this centralized connection will not be TDM (legacy). Certain carriers are now offering IP based trunking using a protocol called Session Initiation Protocol (SIP). SIP allows for calls to be setup over standard IP data networks as Voice over IP (VoIP) calls. Using
VoIP trunking allows the entire call to exist as an IP stream directly to a carrier. This is more efficient than the call being an IP stream from the remote location to the datacenter and then being converted back into TDM signaling. If the calls were converted back into TDM signaling at the datacenter when connecting to the carrier’s network it would require a large amount of expensive call processing servers in order to translate the calls. When the entire call flow exist as an IP stream the call can be sent as data packets with no need for conversion when connecting to the carrier’s network. With the use of an IP data connection in order to connect to the carrier’s network there is now the same risk as connecting to any other untrusted data network. In order to provide security and a demarcation between the customer and carrier networks a device called a session border controller (SBC) is used. An SBC is a full application level proxy and firewall that protects an organization from malicious calls and attacks such as denial of service. In this project an SBC will be used for security protection and connecting to the carrier’s network as the PSTN gateway. Figure 2 shows a basic call flow using centralized trunking.
2.1.2 Routing platform

In order to route calls to the correct locations within and between networks a session routing platform must be installed somewhere in the network. When a call comes into the organization the routing platform examines the destination phone number for the call then does a lookup in a local routing table to find what IP address it should forward the call to. The same concept is applied to outbound calls where the next hop IP address would just be the carrier’s network. Session routers can be stand alone platforms however SBCs have at least basic a session router built in. For this project the SBC was also used as a session router because it has a powerful routing engine built in.

2.1.3 Network QOS

The network infrastructure must be able to transport call data reliably and in a timely manner. VoIP calls have a built in buffer called a jitter buffer that waits for packets and reorders them before playback but they are normally only about 150 millisecond buffers. In order to ensure call packets don’t get dropped and arrive in a
timely manner the network in which the calls are traveling should be enabled for quality of service (QoS). The remote routers along with the edge routers at the datacenter will be performing QOS tagging on voice traffic to ensure packet priority. QOS will also be purchased as a service on the data T1s going to the remote locations along with the circuits at the data center in order to ensure the packets remain a priority while traveling through the service provider’s network.

2.2 Physical Lab Layout

Figure 3 shows the physical layout of the lab environment. At the top is the edge router. The tan line to Verizon is a T1 data connection to an MPLS network connection the lab to Verizon’s VoIP services. It also has a connection to the lab switch on the switch port 1 VLAN 2.

The switch then connection to each SBC on SBC ports S0P0 and switch ports 21 and 22 which are also on VLAN 2. This connection is for the SBC untrusted traffic facing Verizon.

The switch again connects to each SBC on SBC ports S0P1 and switch ports 23 and 24 which are on VLAN 3. This connection is for the SBC trusted traffic to the internal network facing the Nortel BCM phone systems.

The SBCs are connected to each other via two crossover cables that allow them to work as one unit for the high availability. The SBC management interfaces are also connected to the switch on ports 19 and 20 on VLAN 4.

Each of the phone systems are connect to the switch on ports 2 and 4 on VLAN 3.
Figure 3. Physical lab layout
2.3 Logical Lab Network Layout

Figure 4 shows the logical network layout of the lab environment. These subnets are changed from the actual IP subnets but provide a reference for how the lab is configured.

An example inbound call would initially send a packet containing call setup information from Verizon’s call signaling subnet (172.0.1.0/25) to the untrusted interface of the lab SBC (192.168.128.2). The SBC would then examine the packet and if it is valid it will perform network address translation up to layer 7 and forward the packet to the destination phone system IP address. The phone system would respond along the same path in reverse. The call would then start streaming from both sides in both directions. On Verizon’s side a different subnet is used for media (172.0.1.1) rather than using the same one as the call signaling. The lab side uses the same subnet for signaling and media.
3. Deliverables

Each deliverable was based on performing calls with the Nortel BCM 450. As a wish list item the Nortel BCM 400 was also attempted to be certified with Verizon business. The BCM 400 is known to have a non standard implementation of the VoIP protocol and is not natively be interoperable.
3.1 Perform inbound and outbound calls / faxes
 The end user should be able to make calls just as they normally do today. All PSTN features should be available to the end user as they are today.

3.2 Application layer SIP NAT
 The SBC should provide the internal network with topology hiding.

3.3 SIP private header removal
 The SBC should remove all sensitive information before traffic exits into the untrusted network facing Verizon.

3.4 Call admission control
 The SBC should be able to protect the voice service as well as itself by limiting the number of connections an endpoint can make. It should also block incoming calls destined for unknown numbers.

3.5 High Availability
 The SBC should be configured in a highly available mode so that it is not a single point of failure.

4. Project Planning

4.1 Budget
 For the lab proof of concept all of the equipment is already in available. Each manufacture (or service provider) has provided test equipment/services at no cost for lab testing. For the production implementation the target company will be purchasing all equipment at their confidential negotiated rates. There have been no unexpected additional costs related to this project.
4.2 Timeline

Figure 5 shows the original timeline from the conception of the project. The lab configuration piece went according to plan with the exception of the configuration certification with Verizon. The certification did not happen until early May due to other changes that were happening in the lab with the Verizon circuit. The production implementation was eliminated from the senior design schedule because the company funding has been delayed. The production implementation will still happen but not until senior design has already ended.

4.3 Software

The only PC software used was Wireshark. This application was used for packet capturing. The remaining software was just the firmware embedded into the networking equipment.

4.4 Hardware

The following hardware platforms were used in the lab testing.
4.4.1 Session Border Controller

The SBC was the Acme Packet Net-Net Session Director 4500 running firmware SCX6.1.0 MR-4 Patch 2 (Build 682). This platform acted as the core security and session routing platform.

4.4.2 Endpoint PBX

The remote location PBX was a Nortel BCM450 Revision 5 Software 9.0.1.01.480.

4.4.3 Network

The data infrastructure consisted of a Cisco 2821 router and 3750 switch.

4.4.4 SIP Trunking Service

The service provider was Verizon Business using their Burstable Enterprise SIP Trunking (BEST) product. They are provided a data T1 with QOS and concurrent call ports in order to replicate the datacenter centralized trunking services on a small scale.
5. Proof of Design

The following sections outline how each deliverable was met.

5.1 Perform inbound and outbound calls / faxes

The following test cases show packet captures various types of PSTN calls routing through the system successfully or failing when they should. These test cases prove that all the normal PSTN features are available for users and that the migration will be transparent to end users. For proof of interoperability a letter from the Verizon engineer this author worked with can be found in Appendix A. The interoperability testing was completed and this configuration is now certified for interoperability for use with Verizon VoIP services.

As a note for the packet captures some of the information has been blocked out. For reference the IP address ending in x.x.x.17 is the Verizon call signaling address. The IP address ending in x.x.x.132 is the Verizon media address. The two Verizon IPs are on the same subnet. The IP address ending in x.x.x.2 is the lab session border controller untrusted interface for signaling and media. The lab IP is on a difference subnet.

5.1.1 Inbound Call

A Wireshark packet capture was taken during a simple inbound call from my cell phone to the remote location phone system. Figure 6 shows the successful inbound call flow using the call graphing feature of Wireshark. In this call flow the originator ends the call. This can be seen by the fact that the BYE message was sent by the same side that sent the first INVITE packet. Figure 7 shows the same type of inbound call with the
answering party ending the call. This can be seen by the fact that the BYE message was sent by the other side rather than the side that sent the first INVITE packet.

Figure 6. Inbound call originator release
Figure 7. Inbound call answering party release
5.1.2 Inbound Call Cancel

Figure 8 shows the call flow of a call that starts ringing but the caller hangs up before the call is answered. This test is to ensure the call request terminates properly.

Figure 8. Inbound call cancel
5.1.3 Inbound call rejection

Figure 9 shows a call coming in from Verizon destined for a number that is not recognized as belonging to this company. The lab SBC rejects the call with a 404 Not Found error.

Figure 9. Inbound call rejection
5.1.4 Caller-ID Support

Figure 10 shows deep into the INVITE packet and the FROM header is highlighted in blue. This shows that the call is from “WIRELESS CALLER” and that the calling number starts with 513. The entire number shows up on the phone system handsets along with the name.

![Figure 10. Caller-ID packet information](image-url)
5.1.5 Call Waiting

Figure 11 shows a packet trace of two calls in order to prove call waiting works. The first packet is an invite to a number destined for the lab phone system. This call is setup and answered. While the first call is still going on a second call is placed to the same number. The highlighted packet shows a response of 180 Ringing for the second call. This shows that the configuration can handle call waiting.
5.1.6 Inbound Fax

Figure 12 shows an inbound call that is answered. The call comes up in the default codec of G.729. This codec compresses calls in order to save bandwidth however it disrupts faxes. Once the call and answered and the fax tones travel through the audio path the phone system detects this and sends a INVITE message asking for the codec to change to G.711 which is uncompressed and supports faxes. In the trace it can be seen that the RTP packets start out as G.729 but after the second invite they switch to G.711. The fax was received successfully.

![Graph Analysis](image.png)

Figure 12. Inbound fax
5.1.7 Inbound Call with Blocked Caller-ID

Figure 13 shows a successful inbound call. This call has a blocked caller-ID value. This can be seen highlighted in the blue box that the call is from “Anonymous”.

Figure 13. Inbound Call with Blocked Caller-ID
5.1.8 Busy Signal

Figure 14 shows an inbound call that is rejected because the line is busy. This is a configuration in the phone system to send a busy when a line is already in use or put the user in call waiting. In this case it was configured to send a busy signal.
5.1.9 No Answer Expiration

Figure 15 shows an inbound call that is not answered. After two minutes of ringing (shown as 119.781 seconds and highlighted in blue) the Verizon network send a CANCEL for the call.

Figure 15. No answer expiration
5.1.10 Long Duration Inbound Call

Figure 16 shows an inbound that stays up for over 20 minutes. The timestamp in seconds of the BYE message is highlighted in blue.

Figure 16. Long duration inbound call
5.1.11 Outbound call

Figure 17 shows the successful outbound call. In this call flow the originator ends the call. This can be seen by the fact that the BYE message was sent by the same side that sent the first INVITE packet. Figure 18 shows the same type of outbound call with the answering party ending the call. This can be seen by the fact that the BYE message was sent by the other side rather than the side that sent the first INVITE packet.

Figure 17. Outbound call originator release
Figure 18. Outbound call answering party release
5.1.12 Outbound Call Cancel

Figure 19 shows the call flow of an outbound call that starts ringing but the caller hangs up before the call is answered. This test is to ensure the call request terminates properly.

Figure 19. Outbound call cancel
5.1.13 Outbound Call 1+

Figure 20 shows an outbound call working when dialing 1+ 10 digits. The dialed number is highlighted in blue as 1513xxxxxx.

Figure 20. Outbound call 1+
5.1.14 Outbound International Call

Figure 21 shows an outbound call successfully terminating to an international number. The dialed digits are highlighted in blue as 011442074931232.

![Figure 21. Outbound international call](image-url)
5.1.15 Directory Assistance

Figure 22, 23, and 24 each show an outbound call to directory service at 5551212, 411, and 1411 respectively. The dialed digits are each highlighted in blue.

Figure 22. Directory assistance 5551212
Figure 23. Directory assistance 411
Figure 24. Directory assistance 1411
5.1.16 711 Telephone Relay Services

Figure 25 shows a successful outbound call to 711 Telephone Relay Services. The dialed number, 711, is highlighted in blue.

Figure 25. 711 telephone relay services
5.1.17 911 Services

Figure 26 shows an outbound call to 911. The flow shows the call completing successfully. The dialed number is highlighted in blue. Upon the agent answering this author immediately informed them that this was a test call and had them read the address that came up on their screen. The address read back to this author was correct.
5.1.18 511 Information

Figure 27 shows an outbound call complete successfully to 511 information services. The dialed number is highlighted in blue.

Figure 27. 511 Information
5.1.19 Outbound Toll Free

Figure 28 shows an outbound call complete to an 800 number. The dialed number is highlighted in blue.
5.1.20 Operator Assistance

Figures 29, 30, 31, 32, and 33 each show an operator assisted call by dialing 0+local number, 0+toll number, 0, 00, and 01+international number respectively. For each figure the dialed number is highlighted in blue.

Figure 29. Operator assistance 0+local number
Figure 30. Operator assistance 0+toll number
Figure 31. Operator assistance 0
Figure 32. Operator assistance 00
Figure 33. Operator assistance 01+international number
5.1.21 Outbound Fax

Figure 34 shows an outbound call that is answered. The call comes up in the default codec of G.729. This codec compresses calls in order to save bandwidth however it disrupts faxes. Once the call and answered and the fax tones travel through the audio path the Verizon network detects this and sends a INVITE message asking for the codec to change to G.711 which is uncompressed and supports faxes. In the trace it can be seen that the RTP packets start out as G.729 but after the second invite they switch to G.711. The fax was sent successfully.

![Graph Analysis]

Figure 34. Outbound fax
5.1.22 Early Answer

Figure 35 shows an outbound call to a system that does something called early answer. The remote side starts to send the media stream before it actually sends a 200 OK response to the INVITE message containing the media stream description. The capture shows that the call still gets setup and completes successfully.
5.1.23 Invalid Caller-ID

Figure 36 shows an outbound call attempt with a bogus caller-ID value. Highlighted in blue the FROM value can be seen as 1234567890. This is not a phone number that Verizon has configured as belonging to this location so it blocked attempts to use this caller-ID by sending a 408 Request Timeout message.
5.1.24 Long Duration Outbound Call

Figure 37 shows an outbound that stays up for over 20 minutes. The timestamp in seconds of the BYE message is highlighted in blue.
5.1.25 DTMF

DTMF tones are the tones played when keys are pressed on a phone. Figure 38 shows an outbound call into a conference bridge. As with most conference bridges a passcode must be entered in order to join the bridge. The capture shows the passcode digits 8330 followed by # highlighted in blue. The conference bridge responded according and let me enter the bridge as expected.
Figure 39 Shows an inbound call to the Nortel BCM 450. The BCM was configured to automatically answer with an auto attendant menu. Once the call was automatically answered the menu was played and this author selected 7 as shown highlighted blue. The menu responded accordingly and played the submenu message.

Figure 39. Inbound DTMF
5.1.26 G.711 Media

Figure 40 shows an outbound call with two media options offered to Version. The two options are highlighted in blue. They are G.711 followed by G.729. This order shows the preference. Since G.711 is listed first it is the presented preference. The lower RTP media packets show that the media stream came up in G.711.

Figure 40. G.711 media
5.1.27 G.729 Media

Figure 41 shows an outbound call with two media options offered to Version. The two options are highlighted in blue. They are G.729 followed by G.711. This order shows the preference. Since G.729 is listed first it is the presented preference. The lower RTP media packets show that the media stream came up in G.729.

Figure 41 G.729 media
5.1.28 Early Media

Figure 42 shows an outbound call where the remote system responds to the invite with a 183 Session Progress packet rather than a 200 OK. It also starts sending media before the 183 message. This is not standard however the SBC and Nortel BCM450 still handle the call and it completes successfully.

Figure 42. Early media
5.2 Application Layer SIP NAT

In order to provide topology hiding the session border controller needs to change the IP address not only in the IP headers but within the data payload. Figure 43 shows a packet capture of an inbound call between the SBC and the Nortel BCM phone system. For reference the IP address ending in 114 is the internal network interface of the SBC and the IP address ending in 13 is the Nortel BCM phone system. Highlighted in blue is the IP address of the phone system in the data payload.

Figure 44 shows the same call after the SBC has done the translation. The IP address of the Nortel BCM phone system gets translated to the public facing IP address of SBC.

Figure 43. Internal SIP NAT traffic

Figure 44. External SIP NAT traffic
5.3 SIP Private Header Removal

Certain headers within the SIP payloads can contain information that shouldn’t leave a private network. An example of the User-Agent field is highlighted in Figure 45. Figure 45 is a packet from the Nortel BCM phone system destined for the SBC which will pass it along to Verizon. The User-Agent header contains the version of the SIP library that is being used by the Nortel BCM phone system. External parties do not need this information. This type of information can also be used by an attacker to research what vulnerabilities that SIP library is vulnerable to and exploit those weaknesses. Although it is unlikely that information would lead to an exploit removing it before the packets leave the network is one more layer of security.

Figure 46 shows the same packet after it has been processed by the SBC. The User-Agent header is completely removed from the packet.

![Figure 45. Internal private header traffic](image)
Figure 46. External private header traffic
5.4 Call Admission Control

Figure 47 shows an inbound call attempt for a number that the SBC has does not have in its local routing table. The call attempt is blocked with a 404 Not Found.

![Graph Analysis](image)

Figure 47. Unknown number rejection
Figure 48 shows multiple call attempts into the SBC. The first 3 calls are all to the same number being routed to the Nortel BCM 450. The fourth call is being routed to other equipment in the testing lab. Call path limiting was enabled on the connection to the Nortel BCM 450 to only allow one concurrent call. This allowed the first call to complete but rejected more calls to the BCM while the first call was still active. This configuration still allowed calls to be placed to other connections off the SBC which is shown by the fourth call.

![Call Path Limiting](image)

Figure 48. Call path limiting

5.5 High Availability

Figure 49 shows part of the RTP (media) packets for an active call during the high availability failover. It can be seen that the first four packets alternate destinations show the bidirectional media flows. After the first four packets only the inbound packets from Verizon are seen. At the point the SBC is working on failing over. The standby SBC sends out Gratuitous ARP message in order to take control of the IP address facing Verizon. Shortly after the RTP (media) packets become bidirectional again. As seen by the time stamps this entire process took about a third of one second. This is barely noticeable to a user on a call.
Figures 50 and 51 also show the shared virtual MAC address of the SBC moving switch interfaces from gigabit interface 23 to gigabit interface 24.

Figure 49. HA media failover

Figure 50. MAC address table pre-failover
6. Testing Scenarios

Each deliverable was tested using the following methods.

6.1 Perform inbound and outbound calls / faxes

These test cases not only validate that the calls appears to work correctly but the test are performed with a Verizon engineer who validates at the packet level that the call meet their protocol specifications. The interoperability certification based on these test cases will serve as proof of this deliverable.

6.2 Application layer SIP NAT

SIP NAT ensures the topology hiding function of the session border controller. This can be validated by a packet capture showing the SIP dialog of the call setup. The packet capture should show that the packets on the untrusted side of the session border controller (facing Verizon) contain no IP addresses of the internal equipment. The internal IP address should be replaced by the IP address facing Verizon.
6.3 SIP private header removal

By default many phone systems generate information within the SIP packet regarding the make and model of the phone system. This information could be used by a hacker attempting to find system weaknesses. A packet capture showing both the trusted and untrusted side of the session border controller will show the removal of this information before it is sent to Verizon.

6.4 Call admission control

Each session agent (remote phone system) needs to be limited to how many phone calls that location can make due to bandwidth and security reasons. Call admission control sets limits on how many concurrent phone calls a session agent can make. The session border controller will be set to an arbitrarily low number of concurrent calls allowed (such as 3). A packet capture will be taken showing the setup of 3 concurrent calls and a 4th concurrent call attempt that is blocked by the session border controller.

6.5 High Availability

This test should prove that active calls are not dropped in the event that one of the two session border controllers fail. This will be proven by setting up an active call and then pulling the power on the active node. This should cause the cluster to fail over with no disruption in service (By no disruption in service it is meant that the user has no knowledge of the failover. In reality there is a short loss of audio but it is so minimal, sub 100ms, that the user doesn’t notice.) During the failover there will be a set of assistants speaking and listening on the call to ensure they can communicate throughout the failover.
7. Conclusions and Recommendations

7.1. Conclusions

This author has very confidently concluded that VoIP trunking is a workable solution for organization looking to migrate their telephony infrastructure to the next generation.

7.2. Recommendations

After working closely with VoIP products for the last year this author has come across many weaknesses in default configurations. This author has found that many technology partners just want to make things work and that don’t seriously consider security when installing systems. Any technologist looking to implement direct VoIP communications with external parties needs to devote the time and effort at the packet level to deeply understand the traffic in order to define a best security practice for their environment.

Examining packets and lab testing can also lead to many discoveries about a manufactures implementation of VoIP. It is common knowledge among system administrators that SIP (the main VoIP protocol) is a loosely defined protocol. It was only after working with various systems in the lab did this author fully understand how different every manufacturer implementation is. A manufacturer’s claims regarding SIP support does not mean that they have implemented the entire feature set or that the product will work with other devices. This author’s primary recommendation is to do thorough lab testing before making any major VoIP related investments.
June 1, 2011

Dr. Hazem Said,

I worked with Chris Mackall to perform interoperability testing between the Nortel BCM 450, Acme Packet Net-Net 4500, and the Verizon network. The required interoperability test cases have all passed successfully. Please feel free to contact me with any questions regarding this testing.

Thank you,

Brian Jonson
Unified Communications and Collaboration Solutions Architect
Verizon Business
513-719-5201
brian.jonson@one.verizon.com

[Signature]