Microsoft Windows Server 2008 Functionality and Features

By

Guy Wilkin

Submitted to
the Faculty of the Information Technology Program
in Partial Fulfillment of the Requirements for
the Degree of Bachelor of Science
in Information Technology

University of Cincinnati
College of Applied Science
June 2009
Microsoft Windows Server 2008 Functionality and Features

by

Guy Wilkin

Submitted to
the Faculty of the Information Technology Program
in Partial Fulfillment of the Requirements
for
the Degree of Bachelor of Science
in Information Technology

© Copyright 2009 Guy Wilkin

The author grants to the Information Technology Program permission
to reproduce and distribute copies of this document in whole or in part.

_________________________ __________________
Guy Wilkin Date

_________________________ __________________
Sam Geonetta, Ph.D. Date

_________________________ __________________
Hazem Said, Ph.D. Department Head Date
Acknowledgements

I would like to give special thanks to Dr. Sam Geonetta, my Senior Design advisor. He has provided assistance with all stages of this project. His advising included feedback on the direction of the project, report contents, report formatting and presentation board layout. His advising was critical in aiding my success in the execution of this project.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>viii</td>
</tr>
</tbody>
</table>

1. Statement of the Problem | 1 |
 1.1 Definition of the Need | 1 |
 1.1.1 Hyper-V Server Virtualization | 1 |
 1.1.2 Windows Advanced Firewall | 2 |
 1.1.3 Terminal Services RemoteApp | 2 |
 1.1.4 Network Access Protection | 3 |

2. Project Description and Intended Use | 4 |

3. User Profiles | 4 |
 3.1 Systems Administrators | 4 |
 3.2 Information Technology Managers | 5 |

4. Design Protocols | 5 |
 4.1 Hyper-V | 6 |
 4.2 Windows Advanced Firewall | 8 |
 4.3 Terminal Services RemoteApp | 9 |
 4.4 Network Access Protection | 11 |

5. Proof of Concept | 12 |
 5.1 Physical Components | 12 |
 5.2 Hyper-V Virtualization | 14 |
 5.3 Windows Advanced Firewall | 25 |
 5.4 TS RemoteApp | 39 |
 5.5 Network Access Protection | 52 |
List of Figures

Figure 1. Physical Lab Layout 5
Figure 2. Hyper-V Networking via Virtual NICs and Virtual Switch ... 7
Figure 3. Windows Advanced Firewall Layout .. 9
Figure 4. TS RemoteApp – Client Server Interaction ... 10
Figure 5. NAP Server and Switch Layout ... 11
Figure 6. Project Lab ... 13
Figure 7. Hyper-V Console on Host Server ... 14
Figure 8. Physical Adapter Settings ... 15
Figure 9. Virtual Adapter Settings .. 16
Figure 10. Virtual Machine Directory ... 17
Figure 11. Virtual Machine - ID ... 18
Figure 12. Virtual Machine - XML File .. 19
Figure 13. Hyper-V Snapshot Feature .. 20
Figure 14. Snapshot in Progress .. 20
Figure 15. After Snapshot Completed .. 21
Figure 16. Changing of Desktop Theme ... 21
Figure 17. Change Made After Snapshot .. 22
Figure 18. Applying the Snapshot .. 23
Figure 19. Applying the Snapshot Verification .. 23
Figure 20. Status of Applying Snapshot .. 23
Figure 21. Machine Rolled Back .. 24
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Accessing TS RemoteApp from the Client Machine</td>
<td>46</td>
</tr>
<tr>
<td>46</td>
<td>Programs Available to Client User</td>
<td>47</td>
</tr>
<tr>
<td>47</td>
<td>RemoteApp Security Warning</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>Domain Credentials Are Required</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>OpenOffice.org as Seen on Client Machine</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>OpenOffice.org Drawing Application Drawing</td>
<td>49</td>
</tr>
<tr>
<td>51</td>
<td>Image Saved as “smile.odg”</td>
<td>50</td>
</tr>
<tr>
<td>52</td>
<td>Opening “smile.odg” on the Server</td>
<td>51</td>
</tr>
<tr>
<td>53</td>
<td>Network Policy Server Console</td>
<td>52</td>
</tr>
<tr>
<td>54</td>
<td>NAP Network Connection Method</td>
<td>53</td>
</tr>
<tr>
<td>55</td>
<td>NAP System Health Validators</td>
<td>54</td>
</tr>
<tr>
<td>56</td>
<td>Health Validator Properties</td>
<td>55</td>
</tr>
<tr>
<td>57</td>
<td>Setting the Health Validator to Require a Firewall</td>
<td>56</td>
</tr>
<tr>
<td>58</td>
<td>Configuring DHCP for NAP</td>
<td>57</td>
</tr>
<tr>
<td>59</td>
<td>Setting the NAP DHCP Scope and Name</td>
<td>58</td>
</tr>
<tr>
<td>60</td>
<td>Enabling NAP for the DHCP Scope</td>
<td>59</td>
</tr>
<tr>
<td>61</td>
<td>Configuring Scope Options</td>
<td>60</td>
</tr>
<tr>
<td>62</td>
<td>Setting the Default User Class DNS Server IP Address</td>
<td>61</td>
</tr>
<tr>
<td>63</td>
<td>Configuring the DNS Name of the Default DNS Server</td>
<td>62</td>
</tr>
<tr>
<td>64</td>
<td>Configuring the Default NAP Class DNS Server IP Address</td>
<td>63</td>
</tr>
<tr>
<td>65</td>
<td>Configuring the DNS Name of the DNS Server for the Restricted Network</td>
<td>64</td>
</tr>
<tr>
<td>66</td>
<td>NAP Client Configuration Console</td>
<td>65</td>
</tr>
<tr>
<td>67</td>
<td>Verifying the NAP Client Configuration</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 68. Verifying the IP Address assigned to the Client
Figure 69. NAP Server Log – Client with Firewall Disabled
Figure 70. After Remediation the Client Is Granted Full Access to the Network
Figure 71. Pinging 192.168.1.22 (TS-PG1) from VISTA02
Figure 72. Unsuccessful Ping Results from the Client to TS-PG1
Figure 73. Verifying that the NAP Agent Is not Running on the Client
Figure 74. Ipconfig Run on VISTA02 Indicates it is on the Restricted Network

Table 1. Systems and Their Functions
Table 2. Firewall Log on Server
Table 3. Firewall Log from Server – Dropped Packets
Table 4. Project Timeline
Table 5. Project Budget
Table 6. Project Risks
Abstract

Microsoft Windows 2008 Features and Functionality is a project which explores certain features of Microsoft Windows Server 2008. Many businesses will be upgrading to Windows Server 2008 for their server needs or implementing a new rollout to take advantage of these new features. This project explores and demonstrates Hyper-V, Windows Advanced Firewall, Terminal Services RemoteApp and Network Access Protection. These features provide enhanced security and virtualization. System administrators can use this project as a learning tool from a technical aspect. Information technology managers will be able to use this project to learn more about the new features of Server 2008.
Microsoft Windows Server 2008 Functionality and Features

1. Statement of the Problem

1.1 Definition of the Need

Windows Server 2008 is the latest and greatest server operating system out on the market provided by Microsoft. This operating system release comes with some new features which includes Hyper-V, Windows Advanced Firewall, Terminal Services RemoteApp (TS RemoteApp) and Network Access Protection (NAP). Many businesses will be considering upgrading or implementing Windows Server 2008 into their network infrastructures in the coming years. Information technology managers need to know what the new features are and what they do. System administrators need to understand the technical working of these new features.

1.1.1 Hyper-V Server Virtualization

The main driver for server virtualization is utilization of unused excess capacity of server processors as most servers, according to Morimoto and Guillet, “run under 5% to 10% processor utilization” (8, p. 7). Efficiently using server processing power results in savings because businesses spend less money on hardware and possibly on operating system licenses. This is achieved by using fewer physical servers which reduces power consumption for servers and cooling devices. Power requirements can be reduced by 50% to 75% by decreasing the same percentage of physical servers (8, p. 8).

Reasons for utilizing virtualization technology include a development environment, server consolidation and disaster recovery and high availability. With physical servers today having multiple processors in a single system, “organizations can host dozens of test and development virtual server sessions just by setting up 1 or 2 host servers” (8, p. 11). Hyper-V
gives administrators the ability to configure these virtual servers in various network configurations to best fit their needs. Server consolidation using virtualization involves planning the virtualized environment in a way that takes in consideration existing physical server roles and how to implement the minimum physical and virtual servers to meet the business needs (8, p. 12). As previously noted, this can result in significant cost savings to businesses. Server consolidation generally results in less physical servers being used. This can free up servers to be used as redundant backup systems. Virtual servers are also easily backed up and easily implemented in case of disaster recovery is needed (8, p. 383).

1.1.2 Windows Advanced Firewall

Windows Server 2008 comes with the Windows Advanced Firewall which provides new functionality not seen before. The new features include an improved management interface, Windows service hardening, outbound filtering and granular rules (4, p. 118-120). Utilizing Windows Advanced Firewall can help provide better security for businesses.

1.1.3 Terminal Services RemoteApp

TS RemoteApp is a role which comes with Windows Server 2008 which allows users to access programs running on a remote server via their client machines. According to Mackin and Desai, TS RemoteApp is advantageous in the following ways:

- Users need to access programs hosted on your network from remote locations. In this case, you can deploy TS RemoteApp together with TS Gateway so that the remote users can access the programs from the Internet.

- The network includes old computers that lack the hardware or software resources needed to run a required application.

- The company has a branch office that lacks the IT personnel needed to support a given application on site.
• The network includes user desktops with operating system or software conflicts that prevent the installation of a required application.
• The need to support users who do not have assigned computers but who do need to use a particular application consistently.
• The need to reduce costs associated with an application by installing it on only one computer. (5, p. 218)

Typically a user would be granted Remote Desktop access to a server which hosted applications to which they needed access. TS RemoteApp provides a layer of security by giving the user remote access to only the application(s) they need. The management of access and applications is flexible which helps systems administrators effectively implement remote access while maintaining a secure environment (10).

1.1.4 Network Access Protection

NAP is a role which is available for implementation in Windows Server 2008. NAP enables the ability to require specific “health” requirements of clients connecting to the network. According to Joseph Davies and Tony Northrup, “The system health is defined by a computer's current configuration state, which includes the set of installed malware prevention technologies, their current state (such as enabled or disabled and current or delinquent with the latest updates), and other configuration settings” (1, p. 569). NAP will help in keeping systems virus- and malware-free by preventing infected or under-protected machines from having full access to the network until the problem is remediated. NAP provides for automatic remediation by changing the settings on clients in order to bring it into compliance with the health requirements of the network.
2. Project Description and Intended Use

Many businesses today use Microsoft server technology to provide indispensible services to their employees and customers. Microsoft Server 2008 is Microsoft’s newest server operating system platform, which provides new features and new functionality which will be of benefit to many. Management at any company that currently uses or has interest in services that Microsoft Windows Servers provide, such as email, corporate intranet, and access to applications, would need to make an informed decision whether or not to implement the servers themselves and what operating system to use.

This project demonstrates some new key features of Windows Server 2008. Specifically this project explores and demonstrates Hyper-V, Windows Advanced Firewall, TS RemoteApp and NAP. The resulting project is a virtual network which Skipjack Financial Services or any other interested party can view along with detailed documentation. The two main areas which these features address are security and networking.

3. User Profiles

This project is intended for two groups: systems administrators and information technology managers

3.1 Systems Administrators

The first set of users for this project are system administrators who wish to get a better understanding of the key new features of Windows Server 2008. The virtualized environment and documentation will provide a technical understanding of Hyper-V, Windows Advanced Firewall, TS RemoteApp, and NAP. System administrators who will be upgrading to Windows Server 2008 over the coming years can use this project as a technical reference.
3.2 Information Technology Managers

The second set of users for this project are IT managers who are interested in the new key features of Windows Server 2008, how they function, and how these features could possibly benefit their organization. The documentation for this project contains clear, in-depth explanations of the uses of the key features; they are available for demonstration using the virtual machines which were created.

4. Design Protocols

The project consists of one host server, a Dell PowerEdge T105, running Windows Server 2008 Standard. The Hyper-V role was enabled on this server which acted as the host for virtual machines. At least one virtual Vista client and several virtualized servers setup were used to implement and demonstrate Windows Advanced Firewall, TS RemoteApp and NAP. The servers are part of a domain with the Vista client joined to this same domain. These virtual machines were setup in a virtual network using Hyper-V with access to the Internet using the host server’s NIC. The physical layout of the lab used to work on this project can be seen in Figure 1.
The host server was connected to the Internet and accessible in several ways. The host server was accessed directly with keyboard, mouse, and monitor. Secondly, it was accessed via Remote Desktop on the local network. Lastly, it was accessible via Remote Desktop on the Internet using either the IP address or a domain name setup through Dyndns.com. Dyndns.com provided the ability to use a hostname which points to a server, making it accessible via the Internet even if the IP address (dynamic IP) changes.

4.1 Hyper-V

Hyper-V is Microsoft’s answer to server virtualization which has been released with Windows Server 2008. A standalone version is available or it is enabled as a role on Windows Server 2008. For the purpose of this project, Windows Server 2008 Standard with the Hyper-V role enabled was used. This was the project or “host” server. Figure 2 shows the virtual network.
Figure 2. Hyper-V Networking via Virtual NICs and Virtual Switch

As seen in Figure 2, Hyper-V transformed the NIC settings on the host server. The physical Network Interface Card (NIC), the Broadcom NetXtreme Gigabit Ethernet, had only the Microsoft Virtual Network Switch Protocol and Broadcom driver bound to it. Hyper-V connected the physical NIC to a virtual switch. A second NIC was configured on the host server which was a virtual NIC with all of the required protocols bound to it for Internet access (i.e., TCP/IPv4). This NIC was also connected to the virtual switch. The combination of physical NIC,
virtual NIC and virtual switch was part of the parent partition. Hyper-V used this parent partition to create child partitions. The parent partition directly accessed the hardware (i.e., devices and memory). The child partition did not have direct access to the hardware, but rather was routed through the parent partition to access hardware. Child partitions cannot create other partitions.

The parent partition contained the physical NIC, virtual switch and virtual NIC. The host machine utilized the virtual NIC to communicate TCP/IP traffic via the virtual switch to the physical NIC. The child partition contained a virtual NIC which is "connected" to the virtual switch just as Cat5 cable connects a physical NIC Ethernet port to a switch or router.

4.2 Windows Advanced Firewall

The Windows Server 2008 firewall offers the new ability of bi-directional filtering. The firewall was enabled and configured on the server. Filtering rules included both inbound and outbound traffic. In Figure 3, it is shown that the Windows Advanced Firewall was enabled and running on the domain controller. In this configuration traffic to/from the domain controller and the Terminal Services server, the NAP server and any clients had to pass through the firewall on the domain controller. The firewall filtered inbound and outbound traffic.
One physical server hosted three virtual servers and two virtual client machines. All of these machines were joined to the domain purplegoat.com. Each server was assigned a static IP address and the two clients used DHCP to obtain IP addresses. Table 1 shows all of the machines which were involved as well as their IP addresses and functions.

<table>
<thead>
<tr>
<th>Computer Name</th>
<th>IP Address</th>
<th>Function</th>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>YUG01</td>
<td>192.168.1.5/24</td>
<td>Physical host server Hyper-V role</td>
<td>Windows Server 2008 Standard</td>
</tr>
<tr>
<td>DC-PG1</td>
<td>192.168.1.20/24</td>
<td>Domain Controller Windows Firewall NAP Remediation</td>
<td>Windows Server 2008 Standard</td>
</tr>
<tr>
<td>NAP-PG1</td>
<td>192.168.1.21/24</td>
<td>NAP server DHCP</td>
<td>Windows Server 2008 Standard</td>
</tr>
<tr>
<td>VISTA01</td>
<td>Dynamic</td>
<td>Client</td>
<td>Vista Business Edition</td>
</tr>
<tr>
<td>VISTA02</td>
<td>Dynamic</td>
<td>Client</td>
<td>Vista Business Edition</td>
</tr>
</tbody>
</table>

Table 1. Systems and Their Functions

4.3 Terminal Services RemoteApp

TS RemoteApp is another new feature of Windows Server. TS RemoteApp allows certain Windows clients to access applications which are installed on the server and run them as if they were applications installed locally. This contrasts with Remote Desktop, which allows users to
access the full desktop of the server using a Windows client. The project demonstrates this using a virtual Vista client. Figure 4 shows three stages of interaction between a client and server using TS RemoteApp.

![Diagram of client-server interaction using TS RemoteApp]

Figure 4. TS RemoteApp – Client Server Interaction

As seen in Figure 4, the client-server interaction when a remote application is accessed is shown. The user brings up the TS RemoteApp Web page and clicks on the “Open Office” icon. The server receives the request and serves up the Open Office program to the client. Open office opens on the client’s desktop and appears to be running as a local program.
4.4 Network Access Protection

NAP is a new feature of Windows Server which gives administrators the ability to configure controls over client access to the network and its resources. The project includes the functionality of protecting the network from clients trying to connect to the network that are not in compliance with policies such as requiring an enabled firewall or an active antivirus on the client.

The network configuration to operate NAP requires a NAP-enabled server set up as a Network Policy Server (NPS) and a NAP Remediation server as shown in Figure 5.

Figure 5. NAP Server and Switch Layout

The NPS is set up as an independent virtual server acting as the NAP health policy server and DHCP server. In effect it holds the policies created to require security settings on clients such as enabled firewalls. It does this by assigning the appropriate IP addresses via DHCP to the clients. Clients complying with the health policies are granted a valid IP address with full access to the network. Clients not complying with the health policies are granted restricted access only. Restricted access includes access to the domain controller server. Some clients may be able to be
made compliant by the remediation server and then granted full access to the network. For example, the remediation server has the ability to enable the firewall on a client. This is precisely the purpose of the remediation server: to fix or change the settings on the client side which are non-compliant with the health policy without user intervention.

5. Proof of Concept

5.1 Physical Components

A Dell PowerEdge T105 tower server was set up with Windows Server 2008 Standard installed for the host operating system. The server was connected to a four port router using CAT5 cable. An external Western Digital hard drive was connected to the server using a USB cable. A desktop workstation was also connected to the router using CAT 5 cable. A monitor, keyboard and mouse were connected to the desktop workstation. A laptop had wireless connectivity to the router. The router was connected to a cable modem which was connected to the Internet. The complete physical lab configuration was as shown in Figure 6.
Figure 6. Project Lab

On the far left side was a desktop connected to the router via an Ethernet cable. The monitor, mouse and keyboard were connected to the desktop. The project server was sitting to the immediate right side of the monitor. The project server was connected to the router via an Ethernet cable. The router was situated on top of the project server. The small, black device between the project server and laptop was the external backup drive. The laptop seen in the far right was used to connect wirelessly to the router.
5.2 Hyper-V Virtualization

The Hyper-V role was enabled successfully as shown Figure 7.

Figure 7. Hyper-V Console on Host Server

There were several Hyper-V virtual servers and a Vista client set up. The Hyper-V console is the control panel for all virtual machines. From this console, virtual machines were created and maintained. As shown in Figure 8, the physical network adapter settings after the Hyper-V role was enabled on the project server are displayed.
Figure 8. Physical Adapter Settings

All of the items except for the Microsoft Virtual Network Switch Protocol and Broadcom Driver were enabled. Without Hyper-V enabled, the physical NIC would have had all protocols, as listed in Figure 8, except the Microsoft Virtual Network Switch Protocol enabled. This configuration connected the physical NIC to the virtual switch. The purpose of this configuration was to allow any and all virtual NICs to be able to communicate TCP/IP traffic to the physical NIC, giving them access to the Internet.

As shown in Figure 9, the virtual NIC properties which were created by the Hyper-V role are displayed. These included all protocols except the Microsoft Virtual Network Switch Protocol.
This NIC was also connected to the virtual switch, also created by the Hyper-V role. The host server communicated TCP/IP traffic via this virtual NIC, which in turn communicated to the virtual switch, and then finally to the physical NIC. The Internet could be reached from the physical NIC.

Figure 9. Virtual Adapter Settings
Each virtual machine had a virtual hard disk (".vhd") file associated with it. Each contained the entire virtual machine, including the operating system and applications. The virtual machine directory on the project server listed the files as shown in Figure 10. A total of five virtual machines can be easily identified by the file name.

![Virtual Machine Directory](Figure 10. Virtual Machine Directory)
Each virtual machine had a unique identifier assigned to it by Hyper-V, as shown in Figure 11.

Figure 11. Virtual Machine - ID

The XML document held parameters which told Hyper-V what settings to use for the virtual machine. A sample of one of the XML file contents is as shown in Figure 12.
Figure 12. Virtual Machine - XML File
Hyper-V boasts a “snapshot” feature which allows the state of the machine to be saved prior to making any changes such as installing a Windows patch. The virtual machine can be rolled back to the state it was in when the snapshot was taken if desired. If not then the snapshot can be discarded. Taking a snapshot involves first clicking the “Snapshot” menu option on the lower right side of the Hyper-V console as shown in Figure 13.

Figure 13. Hyper-V Snapshot Feature

Figure 14 shows an image taken from the Hyper-V console which displays the status of the snapshot.

Figure 14. Snapshot in Progress

After the snapshot was completed, a “Now” entry appeared in the sub tree of the snapshot window in the Hyper-V console, as shown in Figure 15.
Figure 15. After Snapshot Completed

Figure 16 shows the change of background on this virtual machine from the Vista theme to the Windows Classic theme.

Figure 16. Changing of Desktop Theme
As shown in Figure 17, the “Now” state displays the desktop wallpaper as the Windows Classic wallpaper.

Figure 17. Change Made After Snapshot
Next, the snapshot (taken when the system was set with the Vista desktop wallpaper) was applied via the Hyper-V console action menu as shown in Figure 18.

![Figure 18. Applying the Snapshot](image)

The apply snapshot wizard presented an option to “take a snapshot then apply” or just “apply” as shown in Figure 19. The snapshot option which was chosen was “apply”.

![Figure 19. Applying the Snapshot Verification](image)

The Hyper-V console showed the status of the virtual machine being rolled back to the snapshot as shown in Figure 20.

![Figure 20. Status of Applying Snapshot](image)
Once the virtual machine was rolled back to the snapshot, the desktop wall paper was back to the Vista themed wall paper as shown in Figure 21.

Figure 21. Machine Rolled Back
5.3 Windows Advanced Firewall

The Windows Advanced Firewall console accessed via the Administrative Tools menu on the server was as shown in Figure 22.

![Firewall enabled on virtual server](image)

Figure 22. Firewall Enabled on Virtual Server

As shown, the firewall can be used in three profiles. They were: Domain Profile, Private Profile, and Public Profile. The firewall was enabled for all three profiles by default. Also by default, the firewall was set to block inbound connections that do not match a rule and allow outbound connections that do not match a rule. For outbound traffic, this means an explicit rule must be created to block the desired traffic; if not the traffic will be transmitted. This project was concerned with the Domain Profile because all traffic will be transmitted on the domain and therefore the rule in this profile applied.
Accessing the firewall settings was achieved by right clicking on the “Windows Firewall Advanced Security” on the left menu and then choosing “Properties.”. Figure 23 shows the resulting properties box.

![Windows Firewall with Advanced Security on Local Computer Properties](image)

Figure 23. Windows Firewall Domain Profile

The firewall could be turned on/off here as well as inbound and outbound connections could be set to block or allow. Clicking on the “Customize” button under Settings resulted in the properties box as shown in Figure 24.
Figure 24. Domain Profile Customization

The “Domain Profile” applies when a server is a member of a domain and authenticated in Active Directory. The “Private Profile” is applied when a server is on a private network sitting behind a gateway or router. The “Public Profile” is applied when a server is directly connected to a public or unidentified location on a new network. IPsec settings allows configuration of security rules for connections between servers.

For the purposes of this project, the “Domain Profile” was the only profile which was configured. Since all connections are via the domain controller, only this profile was applied. The firewall was turned on (on the Domain Controller). “Inbound connections” was set to “Block”. “Outbound connections” was set to “Allow”.
Here the firewall can be set to display a notification to the user when there are inbound connection attempts being made to a program. This was set to “No”. By default the unicast response traffic was set to be allowed and this setting was maintained. Rule merging is configurable via group policy only; hence it was not editable here.

Firewall logging options were as shown in Figure 25.

![Customize Logging Settings for the Domain Profile](image)

Figure 25. Firewall Log Settings

The default firewall log location was set as C:Windows\system32\LogFiles\Firewall\pfirewall.log. The size limit and logging options were configured here. The default size limit of the file is 4,096KB. Logging of dropped packets and successful connections was “No” by default. For this project, logging of dropped packets and successful connections had been enabled. These actions were written to the pfirewall.log file which was useful for demonstration and documentation purposes.

These settings combined to result in the following behavior pertaining to packets. Inbound packets were dropped if there was not an explicit rule configured in the firewall rule set. If there was a rule to allow the packet based upon the rule parameters, the packet was allowed to
be received. Outbound packets were dropped only if there was an explicit rule configured in the firewall rule set. If there was not a rule to block the outbound packet based upon the rule parameters, the packet was allowed to be sent.

To demonstrate the blocking of outbound connections from the server, first a firewall rule had to be created to block the desired packets. A common type of traffic used to demonstrate this is the Internet Control Message Protocol (ICMP). The program called “ping” was executed on the server, which used ICMP to transmit a request to another server on the network then waited for a reply. The results of the request were then reported on the command line interface.

Before a firewall rule was created to block outbound ICMP traffic, the results of using ping with ICMP unblocked were analyzed. Executing the ping program in the command line interface on DC-PG1 was successful, as shown in Figure 26.

![Figure 26. Ping without Firewall Rule](image)

The ping program sent ICMP packets to the IP address 192.168.1.21. This was the IP address of the NAP server, NAP-PG1. NAP-PG1 received the ping request and replied as shown in the reply strings. This took place four times, resulting in four successful replies from NAP-PG1. The server firewall log results of this ping request indicated that it was allowed to process as shown in Table 2. This shows that ICMP traffic was permitted outbound on DC-PG1.
Table 2. Firewall Log on Server

Next a firewall rule had to be created on DC-PG1 which was set to explicitly block outbound ICMP traffic. In the Windows Firewall console on DC-PG1, “Outbound Rules” was selected by clicking on it as shown in Figure 27.

![Outbound Rules](image1.png)

Figure 27. Outbound Rules

Next, in the “Actions” column on the right hand side, “New Rule” was clicked as shown in Figure 28.

![Creating New Outbound Rule](image2.png)

Figure 28. Creating New Outbound Rule
As shown in Figure 29, the type of rule created was “Custom”.

Figure 29. Custom Rule
As shown in Figure 30, the rule was applied to every program that had connections matching the rule properties.

Figure 30. Applying to All Programs
As shown in Figure 31, the protocol type selected was ICMPv4.

Figure 31. Configuring to Block ICMPv4
As shown in Figure 32, the rule was set to apply to any local IP address and any remote IP address.

Figure 32. Applying Rule from Any IP Address to Any IP Address
As shown in Figure 33, the type of rule was set to block the connection.

Figure 33. Setting to Block the Connection
As shown in Figure 34, the rule was applied to all three profiles.

Figure 34. Applying Rule to All Profiles
As shown in Figure 35, the rule was given the name “ICMP Block” with a description as a reminder what it does.

![Rule Creation](image)

Figure 35. Naming Rule “ICMP Block”

After clicking “Finish”, the new rule was created. As shown in Figure 36, it appeared in the Windows Firewall console under the outbound rules.

![Console View](image)

Figure 36. Rule as Seen in Console
Ping was executed from the command line interface. The ping request from DC-PG1 to NAP-PG1 (192.168.1.21) was unsuccessful as shown in Figure 37.

![Ping Command Output]

Figure 37. Failed Ping Request

Each request from the ping resulted in “General failure” and 100% packet loss, indicating that the ping requests were not successful. Analysis of the firewall log file determined that the ping requests were unsuccessful as a result of being dropped, as shown in Table 3. This was a direct result of the outbound ICMP block rule.

<table>
<thead>
<tr>
<th>date</th>
<th>time</th>
<th>action</th>
<th>protocol</th>
<th>src-ip</th>
<th>dst-ip</th>
<th>size</th>
<th>icmptype</th>
<th>icmpcode</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/13/2009</td>
<td>9:59:06</td>
<td>DROP</td>
<td>ICMP</td>
<td>192.168.1.20</td>
<td>192.168.1.21</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>SEND</td>
</tr>
<tr>
<td>4/13/2009</td>
<td>9:59:07</td>
<td>DROP</td>
<td>ICMP</td>
<td>192.168.1.20</td>
<td>192.168.1.21</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>SEND</td>
</tr>
<tr>
<td>4/13/2009</td>
<td>9:59:08</td>
<td>DROP</td>
<td>ICMP</td>
<td>192.168.1.20</td>
<td>192.168.1.21</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>SEND</td>
</tr>
<tr>
<td>4/13/2009</td>
<td>9:59:09</td>
<td>DROP</td>
<td>ICMP</td>
<td>192.168.1.20</td>
<td>192.168.1.21</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>SEND</td>
</tr>
</tbody>
</table>

Table 3. Firewall Log from Server – Dropped Packets
5.4 TS RemoteApp

TS RemoteApp was enabled on the server. A Vista client was set up as a virtual machine. The TS RemoteApp manager, as shown in Figure 38, defined the programs enabled for the Vista client machine to access.

Figure 38. TS RemoteApp Enabled on Virtual Server
The Terminal Server settings were configured as shown in Figure 39. The server name was TS-PG1.purplegoat.com. Terminal services used port number 3389 by default. Port 3389 was the Remote Desktop Protocol (RDP). Require server authentication was enabled. Users were not allowed to initiate unlisted programs on the initial connection.

Figure 39. Terminal Server Settings
The action menu of the Terminal Services console was, as shown in Figure 40, the launching pad to configure the TS RemoteApp. Here applications that were to be made available in TS RemoteApp Web Access were specified. This was accomplished by clicking the Add RemoteApp Programs option to start the wizard.

Figure 40. TS RemoteApp Action Menu
The Add RemoteApp Programs wizard started off with the screen as shown in Figure 41.

Figure 41. RemoteApp Wizard
The next step in the RemoteApp wizard was to select the applications which were to be made accessible via the RemoteApp interface. The programs listed, as shown in Figure 42, were installed on TS-PG1. The OpenOffice.org application suite was selected by checking the check boxes for each OpenOffice.org application.

Figure 42. Choosing Programs for TS RemoteApp
The final screen of the wizard, as shown in Figure 43, gave the opportunity to review the program list. The review shows that the OpenOffice.org application suite had been selected.

Figure 43. Final TS RemoteApp Wizard Screen
After completing the wizard, the programs which were available for remote access were listed in the console window as shown in Figure 44.

![RemoteApp Programs](image)

Figure 44. Programs Enabled for TS RemoteApp Access
On the Vista client machine a Web browser was engaged and pointed to: http://192.168.1.22/ts as shown in Figure 45. This was the Web address of the TS RemoteApp Web interface. Credentials for the purplegoat.com network were required to access this resource.

![Image of Internet Explorer accessing TS RemoteApp](image)

Figure 45. Accessing TS RemoteApp from the Client Machine
Once the credentials were entered and passed, a list of programs available to the user was displayed on the screen as shown in Figure 46.

![Programs Available to Client User](image1)

Figure 46. Programs Available to Client User

When the user selects OpenOffice.org by double clicking the icon, he/she is then presented with a warning that the site wants to establish a remote connection as shown in Figure 47.

![RemoteApp Security Warning](image2)

Figure 47. RemoteApp Security Warning
The remote connection required purplegoat.com network credentials to be entered, as shown in Figure 48.

![Figure 48. Domain Credentials Are Required](Image)

Next the user was presented with the OpenOffice.org application menu from where the drawing application was selected as shown in Figure 49.

![Figure 49. OpenOffice.org as Seen on Client Machine](Image)
A smiley face was drawn in the drawing application, as shown in Figure 50.

Figure 50. OpenOffice.org Drawing Application Drawing
The drawing was then saved as “smile.odg” to the user’s documents folder, as shown in Figure 51.

Figure 51. Image Saved as “smile.odg”
On the TS-PG1 server the ‘smile.odg’ file was opened and viewed successfully as shown in Figure 52.

Figure 52. Opening “smile.odg” on the Server
5.5 Network Access Protection

NAP requires a NPS to be setup and running in order to create and enforce health policies. Health policies can include requiring a firewall, antivirus and Windows updates to be installed and enabled on the client. If a client which is connecting to the network is non-compliant with the health policies but is NAP capable, then remediation can be configured to automatically correct the problem. This requires a second server to serve the remediation role. Another possible scenario is that the client is either not NAP capable (i.e. Windows XP SP2 or earlier) or cannot be remediated. In this case the client is not allowed full network access. Rather it is given restricted access until the problem can be fixed.

To configure NAP on the network, first a NPS had to be created. In the NPS console the NAP configuration scenario was selected and the “Configure NAP” option clicked, as shown in Figure 53.
The network connection method selected was “DHCP” and a user friendly policy name was entered as shown in Figure 54.

Figure 54. NAP Network Connection Method
In the NPS console, under NPS – Network Access Protection, “System Health Validators” was selected as shown in Figure 55.

Figure 55. NAP System Health Validators
The Health Validator properties box appeared as shown in Figure 56. Configure was clicked to open the configuration options for the Health Validator.

![Windows Security Health Validator Properties](image)

Figure 56. Health Validator Properties
As shown in Figure 57, under the Windows Vista tab the checkbox for “A firewall is enabled for all network connections” was checked while all the other checkboxes were unchecked.

![Windows Security Health Validator](image)

Figure 57. Setting the Health Validator to Require a Firewall

The next box which appeared was "Specify NAP Enforcement Servers Running DHCP Server". This was left blank because the DHCP server was set to run on the same server as NPS.
At this stage, the next step was to configure DHCP for NAP. This was done via the DHCP console by navigating to DHCP – nap-pg1.purplegoat.com – Ipv4, then right clicking on “Scope [192.168.1.0]” and selecting “Properties”, as shown in Figure 58.

Figure 58. Configuring DHCP for NAP
“NAP Scope” was entered for Scope name. The starting IP address was set to 192.168.1.26 and the end IP address was set to 192.168.1.60, as shown in Figure 59. The default lease duration of six days was maintained.

Figure 59. Setting the NAP DHCP Scope and Name
Under the Network Access Protection tab, “Enable for this scope” and “Use default Network Access Protection profile” were selected, as shown in Figure 60.

Figure 60. Enabling NAP for the DHCP Scope
When clients connect to the network, DHCP was used to assign each client a unique private IP address. The default user class was applied and used for all NAP compliant clients. This was done via the DHCP console by right clicking “Scope Options” under the IPv4 window of “Scope [192.168.1.0]”, and then clicking “Configure Options”, as shown in Figure 61.

Figure 61. Configuring Scope Options
In the Scope Options under the “Advanced” tab, the vendor class was set to “DHCP Standard Options” and “Default Class” for the user class. Under Available Options, “006 DNS Servers” was checked and the DNS server IP address (192.168.1.20) was added, as shown in Figure 62.

Figure 62. Setting the Default User Class DNS Server IP Address
In the same window, “015 DNS Domain Name” was checked under Available Options with a string value of “purplegoat.com” entered as shown in Figure 63. These settings enabled NAP to recognize the DNS server with an IP address of 192.168.1.20 and the domain name of “purplegoat.com” as the setting to use for NAP compliant clients connecting to the network. This gave the client full network access.

Figure 63. Configuring the DNS Name of the Default DNS Server
Noncompliant clients were assigned to a restricted access network. This was done by adding an entry in DHCP for “restricted.purplegoat.com”. The vendor class remained “DHCP Standard Options” but the user class was set to “Default Network Access Protection Class”. The same IP address of 192.168.1.20 was used for “006 DNS Servers” as shown in Figure 64.

![Configuring the Default NAP Class DNS Server IP Address](image)

Figure 64. Configuring the Default NAP Class DNS Server IP Address
The string value for “015 DNS Domain Name” was set to “restricted.purplegoat.com”, as shown in Figure 65.

![Figure 65. Configuring the DNS Name of the DNS Server for the Restricted Network](image)

The restricted.purplegoat.com was the restricted access network set up for NAP non-compliant and non-capable clients to be assigned to.

In order for NAP to be fully functional it had to be configured on the server as well as the client. There was a NAP service which ran on the client called the “Network Access Protection Agent”. The NAP agent service was set to run automatically on Vista machines. Also the “Enforcement Client” had to be enabled. This was done by opening the NAP client configuration console and then executing ‘napclcfg.msc’ at the run prompt.
The “DHCP Quarantine Enforcement Client” was enabled on the client machine as shown in Figure 66.

Figure 66. NAP Client Configuration Console
Executing “netsh nap client show state” from the command line interface verified that the NAP client service was running and that the DHCP Quarantine Enforcement Client was enabled, as shown in Figure 67.

![Command Line Output](image1)

Figure 67. Verifying the NAP Client Configuration

Executing `ipconfig` on the client showed that it was logged onto the purplegoat.com network with a valid IP address of 192.168.1.29 on the network, as shown in Figure 68. `Ipconfig` also showed the subnet mask of 255.255.255.0, which was the network of the purplegoat.com domain.

![IP Configuration](image2)

Figure 68. Verifying the IP Address assigned to the Client
This indicated that this client was compliant with NAP health policies which were set to require that the client was NAP capable and that the firewall on the client was enabled. Comparing Figure 68 with Figure 67 shows that the NAP client service was running which means it is NAP capable.

If a NAP-capable client connects to the network with the firewall disabled or the firewall is disabled after it is connected to the network, NAP will detect this situation and remediate the problem by automatically enabling the firewall on the client. Figure 69 displays the resulting NAP server log when the firewall was disabled on VISTA02.

```
+ System
- EventData
  SubjectUserSid  5-1-0-0
  SubjectUserName  -
  SubjectDomainName  -
  FullyQualifiedSubjectUserName  -
  SubjectMachineId  S-1-5-21-577602166-3899801390-448023032-1113
  SubjectMachineName  VISTA02.purplegoat.com
  FullyQualifiedSubjectMachineName  PURPLEGOAT\VISTA02S
  MachineInventory  6.0.6001.10 .x64 Domain Controller
  CalledStationId  192.168.1.0
  CallingStationId  00155D01060F
  NASIPv4Address  192.168.1.21
  NASIPv6Address  -
  NASIdentifier  NAP-PG1
  NASPortType  Ethernet
  NASPort  -
  ClientName  -
  ClientIPAddress  -
  ProxyPolicyName  NAP DHCP
  NetworkPolicyName  NAP DHCP Noncompliant
  AuthenticationProvider  Windows
  AuthenticationServer  NAP-PG1.purplegoat.com
  AuthenticationType  Unauthenticated
  EAPType  -
  AccountSessionIdentifier  31393332333433313339
  QuarantineState  Quarantined
  QuarantineSessionIdentifier  (5A38D44E-D02B-41C9-B52F-F207AC640E0B) - 2009-04-17 15:44:31.463Z
```

Figure 69. NAP Server Log – Client with Firewall Disabled
The log details show that VISTA02 was quarantined due to failing to be NAP DHCP Compliant. The remediation took place when NAP automatically enabled the firewall on VISTA02. Figure 70 shows the NAP log which indicates that the client was compliant with NAP DHCP. The client was removed from the restricted network (quarantine)“restricted.purplegoat.com”, and was given full access to purplegoat.com.

Figure 70. After Remediation the Client Is Granted Full Access to the Network

If the client were not NAP capable, it would have been assigned to the restricted network (restricted.purplegoat.com). This was achievable by disabling the “Network Access Protection Agent” service on VISTA02, and then renewing the DHCP IP address. The restricted.purplegoat.com domain included DC-PG1 and NAP-PG1. However, TS-PG1 was not included. Therefore VISTA02 could ping TS-PG1 only when given full access by NAP. If
VISTA02 was on the restricted network, it would not have been able to ping TS-PG1. The ping result when VISTA02 had full access to the network was successful, as shown in Figure 71. Since the ping request was successful and there was 0% packet loss, it verified that the VISTA02 client could communicate with TS-PG1.

Figure 71. Pinging 192.168.1.22 (TS-PG1) from VISTA02

The result of the ping with the “Network Access Protection Agent” service disabled on VISTA02 was unsuccessful as shown in Figure 72. Since the ping request failed with 100% packet loss it verified that VISTA02 could not communicate with TS-PG1.

Figure 72. Unsuccessful Ping Results from the Client to TS-PG1

To verify if the NPA agent service was running, “netsh nap client show state” was run from the command line interface which indicates it was not running, as shown in Figure 73.

Figure 73. Verifying that the NAP Agent Is not Running on the Client
VISTA02 was on the restricted network since the NAP agent had been disabled, thus rendering it NAP non-capable. Running `ipconfig` on VISTA02 resulted in a valid IP address; however, it also indicated that it was assigned to the restricted.purplegoat.com network as shown in Figure 74.

![Figure 74. Ipconfig Run on VISTA02 Indicates it is on the Restricted Network](image-url)
6. Timeline

Table 4 shows the timeline the entire project.

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Research</td>
<td>9/24/2008</td>
<td>10/24/2008</td>
</tr>
<tr>
<td>5</td>
<td>List of Deliverables</td>
<td>1/20/2009</td>
<td>1/20/2009</td>
</tr>
<tr>
<td>6</td>
<td>Configure Virtual Servers in Hyper-V</td>
<td>1/14/2009</td>
<td>1/26/2009</td>
</tr>
<tr>
<td>7</td>
<td>Updated Project budget and Risk Analysis Plan</td>
<td>1/26/2009</td>
<td>1/26/2009</td>
</tr>
<tr>
<td>10</td>
<td>Configure Firewall</td>
<td>2/18/2009</td>
<td>2/24/2009</td>
</tr>
<tr>
<td>17</td>
<td>Tech Expo</td>
<td>5/7/2009</td>
<td>5/7/2009</td>
</tr>
</tbody>
</table>

Table 4. Project Timeline

The first phase of the project consisted of research for the project and creating a proposal. The proposal was presented at the University of Cincinnati. The second phase was dedicated to starting the actual building of the prototype as well as creating a list of deliverables. These items made up the design freeze which was presented to the University. The third phase involved finalizing the prototype to meet the deliverables. The project was presented at Tech Expo as well as at the University. The report was finalized and published.
7. Budget

The budget for this project is shown in Table 5. The total retail cost of the project was $5,410.00. Over half of the cost was covered by the Microsoft Academic Alliance and Skipjack Financial Services (for the laptop). The out-of-pocket cost was $2,014.00, which covered the project server, desktop, and external backup hard drive.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Retail Cost</th>
<th>My Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell PowerEdge T105</td>
<td>Project server to host all virtual machines</td>
<td>$1,130.00</td>
<td>$1,130.00</td>
</tr>
<tr>
<td>Desktop</td>
<td>Desktop used for accessing server</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Laptop</td>
<td>Laptop used for accessing server</td>
<td>1400</td>
<td>0</td>
</tr>
<tr>
<td>Western Digital Hard Drive</td>
<td>Hard drive used for backups</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>Windows Server 2008</td>
<td>Provided by Academic Alliance</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Windows Server 2003</td>
<td>Provided by Academic Alliance</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$5,410</td>
<td>$2,014</td>
</tr>
</tbody>
</table>

Table 5. Project Budget (2, 13)
8. Deliverables

The Hyper-V role was enabled on host server. The primary role of the host server was to host the virtual machines which made up the network for implementing the other deliverables. Hyper-V successfully fulfilled this role. In addition, the external backup drive was connected to this server and Windows Server Backup used to back up the entire project including the host server and virtual machines.

Three virtual servers were created: the domain controller, the NAP server and the TS server. All three ran Windows Server 2008 Standard edition. The domain controller ran DNS, provided the Active Directory service and also provided the remediation role for NAP. Windows Advanced Firewall was enabled and demonstrated on the domain controller.

A virtual server dedicated to the NAP implementation of a Dynamic Host Configuration Protocol (DHCP) was created and implemented. Clients were required to have Windows Firewall enabled in order to gain full network access.

TS RemoteApp was configured using the TS Web Access method and Open Office.org as the software. Clients were able to utilize TS RemoteApp to run OpenOffice.org and create and save documents.

Windows Server 2008 Advanced firewall was enabled and configured on domain controller. Custom advanced firewall rules were configured to limit outbound traffic.

9. Testing Plan

This project was tested by the author. Reliance on logs on the servers themselves verified the results of the implementation. The manager at Skipjack Financial Services, a Microsoft Certified Systems Engineer, reviewed the deliverables and confirmed they were met. Testing helped ensure that the features implemented were operating properly and as designed. Testing
also served to get feedback, which was helpful in improving the project. Testing of Hyper-V functionality was done via the Hyper-V console on the host server. Functions tested included creating virtual servers, controlling virtual server status, and creating snapshots of virtual servers. Testing of TS RemoteApp involved connecting a Vista client to the TS RemoteApp service on the server in order to access the desired applications. A check was done to ensure that the client machine could access applications and execute them successfully via the desktop. Conversely, tests were conducted to see if clients without permissions could access applications on the server.

The Windows 2008 Firewall was tested similarly, except that what was being tested was blocking of outbound traffic. Logging showed details which helped determine if the firewall rules were being applied correctly. NAP was set up to require that a firewall be enabled on the client. A NAP Health Policy Server was set up and added to the network. Testing the connection to the network from the client side was either allowed or prohibited, depending on the client state and the NAP settings. On the server side, logs showed the result of a client which was either permitted or denied to access the network.

10. Risk Management Plan

Some risks to the project were successfully mitigated, as shown in Table 6. Hyper-V requires a processor that supports virtualization in order to function properly. For this reason, the Dell PowerEdge T105 with AMD Opteron Quad Core 1352 Processor was selected for use as the host server. Using the snapshot feature allowed any problematic changes to be undone, in a sense rolling it back. The virtual machines were backed up on the external hard drive so if the server failed, the virtual machines could be restored once the server was fixed. Functionality was a key part of the presentation, and for this purpose a live demonstration was used. However, since a
free, unguaranteed dynamic DNS service was being used, videos using CamStudio software were created for the presentation.

<table>
<thead>
<tr>
<th>Risk Description</th>
<th>Risk Level</th>
<th>Risk Mitigation Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change to servers causes problems</td>
<td>High</td>
<td>Use the snapshot feature of Hyper-V</td>
</tr>
<tr>
<td>Hyper-V does not work on server</td>
<td>High</td>
<td>Spec out server hardware to meet Hyper-V requirements</td>
</tr>
<tr>
<td>Project server crashes and burns</td>
<td>High</td>
<td>Backups on external hard drive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detailed notes on configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilize Dell warranty</td>
</tr>
<tr>
<td>Remote connection to not available</td>
<td>High</td>
<td>Videos of what will be presented as a backup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test remote connection often</td>
</tr>
</tbody>
</table>

Table 6. Project Risks

11. Conclusion

Microsoft Windows Server 2008 offers many new features that are designed to make businesses more secure and productive. This project explored a number of these new features: Hyper-V, NAP, TS RemoteApp and Server 2008 Firewall. In the not-so-distant future, many companies will consider upgrading their servers’ infrastructures in order to meet security demands and the changes in the way server technology is used in the workplace. This project demonstrated the key features which those businesses will regard as important.

Systems administrators working with Windows Server 2008 can reference this document for the technical content. They can use it to implement their own network infrastructure. Information Technology managers can reference this document in order to get a better understanding of the key new features of Server 2008.
References

