1967 Mustang Rear Suspension Redesign

A Baccalaureate thesis submitted to the
Department of Mechanical and Materials Engineering
College of Engineering and Applied Science
University of Cincinnati
in partial fulfillment of the
requirements for the degree of

Bachelor of Science
in Mechanical Engineering Technology

By

Nicholas Crall

April, 2016

Thesis Advisor:
Professor Ahmed Elgafy, Ph.D.
# TABLE OF CONTENTS

1967 MUSTANG REAR SUSPENSION REDESIGN ............................................................ II
TABLE OF CONTENTS ........................................................................................................ III
LIST OF FIGURES ................................................................................................................ IV
LIST OF TABLES .................................................................................................................. IV
ABSTRACT ............................................................................................................................. V
INTRODUCTION - PROBLEM STATEMENT AND INTERVIEW ........................................ 6
  PROBLEM STATEMENT..................................................................................................... 6
  INTERVIEW ...................................................................................................................... 6
ORIGINAL DESIGN .............................................................................................................. 7
RESEARCH CONCLUSION .................................................................................................. 8
CUSTOMER FEATURES AND OBJECTIVES .................................................................... 9
  PRODUCT FEATURES AND OBJECTIVES .................................................................... 9
CONCEPT GENERATION AND SELECTION ..................................................................... 10
  COILOVER SELECTION ................................................................................................. 10
  COILOVER LOWER MOUNTING BRACKET .................................................................. 10
CALCULATIONS ................................................................................................................ 12
  SHEAR STRESS .............................................................................................................. 12
  SPRING RATE ............................................................................................................... 13
TESTING ............................................................................................................................ 15
WORKS CITED .................................................................................................................. 17
APPENDIX A – RESEARCH ............................................................................................... 23
  LEAF SPRING RESEARCH ........................................................................................... 23
  AIR SUSPENSION ........................................................................................................ 25
  COILOVERS .................................................................................................................. 26
  THE WATT’S LINK ....................................................................................................... 28
  PANHARD ..................................................................................................................... 28
  FOUR-LINK ................................................................................................................ 29
  TRAINGULATED FOUR LINK .................................................................................... 29
  PARALLEL FOUR-LINK ............................................................................................... 30
APPENDIX B – COMPILED CUSTOMER SURVEY ........................................................... 31
APPENDIX C – QUALITY FUNCTION DEPLOYMENT (QFD) ............................................. 32
APPENDIX D – TIMELINE ............................................................................................... 33
APPENDIX E – BUDGET .................................................................................................. 34
LIST OF FIGURES

Figure 1 – Current Suspension System – Courtesy of AutoZone ............................................. 7
Figure 2 – Ridetech HQ Coilovers .......................................................................................... 10
Figure 3 – Chassisworks Eliminator II Shock Mount ............................................................... 10
Figure 4 – Lower Coilover Mounting Bracket (View 1) .......................................................... 11
Figure 5 – Lower Coilover Mounting Bracket (View 1) .......................................................... 11
Figure 6 – Lower Coilover Mounting Bracket ....................................................................... 15
Figure 7 – Rear axle and Lower Coilover Mounting Bracket Assembly ................................ 16
Figure 8 – Lower Coilover Mount FEA .................................................................................. 17
Figure 9 - Model of Testing Apparatus ................................................................................ 18
Figure 10 – Leaf Spring Results ............................................................................................ 19
Figure 11 – 4 Link and Coilver Results ................................................................................. 19
Figure 12 – Collected Data ..................................................................................................... 20
Figure 13 – Squat of Suspension System Comparison ............................................................ 20
Figure 14 – Leaf Spring Suspension – Courtesy of superproply.de ....................................... 23
Figure 15 – Traction Bar – Courtesy of cartechbooks.com ..................................................... 24
Figure 16 – Panhard Rod and Watts Link – Courtesy of ve-blog.local-motors.com .............. 24
Figure 17 – Air Suspension System – Courtesy of Discoweb.org .......................................... 25
Figure 18 – Adjustable Coilover – Courtesy of Super Street Online ..................................... 26
Figure 19 – Coilover Assembly – Courtesy of Super Street Online ....................................... 27
Figure 20 – Triangular 4-Link – Courtesy of Ridetech ............................................................ 29
Figure 21 – Parallel 4-Link Utilizing Panhard – Courtesy of Ridetech .................................... 30
Figure 22 – Timeline of Project ............................................................................................. 33
Figure 23 – Lower Plate ......................................................................................................... 35
Figure 24 – Side Plate ............................................................................................................. 35
Figure 25 – Top Plate ............................................................................................................. 36
Figure 26 – Vertical Plate ....................................................................................................... 36
Figure 27 – Lower Coilover Mount Assembly ....................................................................... 37

LIST OF TABLES

Table 1 - QFD ......................................................................................................................... 32
Table 2 – Budget .................................................................................................................... 34
ABSTRACT

The original leaf spring rear suspension designed for the 1967 Ford Mustang underperforms in comparison to modern suspension designs. Anti-squat and axle wrap in addition to poor ride quality limit the 1967 Mustang to a lower standard of performance. A redesign of the rear suspension was completed and tested to meet the standards of car enthusiasts wanting a car for both drag racing and drive comfort.

The original rear suspension used on a 1967 Ford Mustang is a leaf spring suspension. This type of suspension relies on the leaf springs to locate the axle and suspend the car. This allows for the axle to rotate slightly on the springs causing what is called axle wrap that leads to a reduction of traction. Installing a modern triangulated 4-link suspension system that uses coilovers allows the axle to be rigidly located by the links while the car is suspended by the coilovers. This would greatly reduce the amount of axle wrap, but more importantly increase the amount of anti-squat making the acceleration of the vehicle more consistent with improved traction.

My portion of the project was to design the lower coilover mounting brackets and to select appropriate coilovers for the vehicle. The premise behind the design was to create a mounting bracket that allows for multiple coilover positions to perform in multiple applications. The suspension system was designed to satisfy the customer per the collected customer surveys. To do so, the suspension system was designed and tested to control and lower the amount of anti-squat and axle wrap.
INTRODUCTION - PROBLEM STATEMENT AND INTERVIEW

PROBLEM STATEMENT
The Ford Mustang has been one of the most iconic vehicles in American automotive history. Being introduced in the year 1964 ½, the Mustang is still in full stride and has sold over 8 million vehicles. The 1967 Ford Mustang saw different overall dimensions and more powerful engines than its predecessors. This helped to spark the “muscle car” revolution. Today, the cars are sought after by car enthusiasts and collectors alike. Being built in 1967, this mustang is missing a lot of modern technology which affects performance.

The 1967 Mustang currently utilizes a leaf spring and shock absorber suspension system. The current suspension system causes issues in handling and ride quality of the vehicle. The leaf spring and shock absorber suspension systems also lacks in versatility. This design project will focus on improving handling and ride quality by applying modern technology and components while redesigning a new rear suspension system. This is a team project, I will focus my time on suspending the vehicle, as well as managing the team. Alex Snyder’s role is to locate the axle in the correct position. Jared Niehauser’s task will be designing a sufficient sub-frame that will support the suspension system.

INTERVIEW
Justin Miller is a current car enthusiast who has personally designed and hand built his own vehicle from scratch. He is knowledgeable in suspension systems from his experience of designing his own. According to Justin, he expressed that the car handling and the adjustability of the suspension system should be our main focuses. This is critical information for designing a sufficient suspension system.
The 1967 Ford Mustang utilizes a leaf spring and shock absorber suspension. At that time this was a great design; however, as time progressed it became out-of-date and various suspension systems were designed for many different purposes. Figure 1 illustrates the components that were used in 1967 for the rear suspension.

One of the many disadvantages of leaf springs is that leaf springs are heavier than most other suspension systems. In every application it is beneficial for weight reduction. Another downfall of leaf springs is that the leaf springs themselves locate the axle. Because a spring locates the axle this allows the axle to move slightly left, right, forward, and aft. Modern suspension systems locate the axle more precisely.
RESEARCH CONCLUSION

The conducted research reviewed many styles of rear suspension systems along with their components. The research looked into the improvement of the original suspension system. Improving the existing components includes upgrading the bushings, shock absorbers, and spring leaves. Improvement of the original design also includes installing traction bars and a Panhard bar or Watt’s link. These modifications would improve overall handling, but from a marginal stand point. Improving the original design requires a lower cost investment and involves an easier installation. However, enhancing the original suspension system lacks in versatility, adjustability, and other key customer features.

The research directed itself into the technology of air ride suspension systems. While this type of suspension system provides many benefits towards handling and adjustability, the components that would have to be implemented are not only very expensive but also involve a complex installation process. The benefits that this system could supply would be the reduction of body roll while cornering and automatic body leveling while under various loads. These features would greatly improve the overall performance, but a compromise had to be made with installation time and budget.

Through further research it was concluded that a triangulated 4-link and coilover suspension meets the desired customer features. The triangulated 4-link and coilover suspension offers a lower cost alternative to the air ride suspension, while also providing adjustability, greater performance, lower unsprung mass due to not needing a panhard bar, and greater overall ride quality than the original design. The design of the suspension will be separated into three major categories. The first category will include the selection of the coilover shock absorber and the design of the multi-positioning mounting brackets. The second category will include the selection of bushings and the design of the links and corresponding mounting brackets. The final category will include the design of the sub-frame to properly support the system.

For further detailed research, see Appendix A.
CUSTOMER FEATURES AND OBJECTIVES

PRODUCT FEATURES AND OBJECTIVES
The product features were obtained from the customer features listed on the survey. According to the survey the product features are listed in descending order from most important to least important. The product objectives are the measurable goals established to meet the customer features.

1. Adjustability (18%)
   a. The coilovers used will provide features that will allow for altering of the preload and valve adjustment.
   b. Multi-position mounting brackets to set desired preload, anti-squat, and roll center for performance needs.

2. Ride Quality (17%)
   a. Spring factor of a suitable nature.
   b. Performance bushings.
   c. Mono-tube coilovers to maximize sensitivity in minimal movement of the suspension.

3. Weight (16%)
   a. Measurement will be performed to compare the mass of the current suspension to the new design
   b. The goal is to have the new suspension system lighter than the current system.

4. Complexity of Installation (14%)
   a. Usage of standard sizes for hardware and components.
   b. Ability to complete installation with use of standard tooling.

5. Initial Investment Cost (13%)
   a. Based on customer survey results the investment cost shall not exceed $2,000.

6. Serviceability (13%)
   a. Inspectional parts will be visible and easily accessible without removing any components.

7. Material Used (9%)
   a. Material used will meet desired weight and factors of safety.
   b. Material used will withstand environmental conditions.
CONCEPT GENERATION AND SELECTION

**COILOVER SELECTION**

There is a plethora of coilover manufacturers that provide quality products. Due to Ridetech’s advanced knowledge in coilover suspension systems in vintage cars, along with company’s unprecedented quality. The decision to utilize Ridetech’s HQ coilover was made. HQ stands for Handle Quality. The decision to choose this model was made due its ability to adjust the ride quality of the coilover based on the customer feedback.

![Ridetech HQ Coilovers](image)

**COILOVER LOWER MOUNTING BRACKET**

To fulfill the customers desire to have adjustability, the lower mounting bracket utilizes multiple hole locations for the ability to change the location of the coilover as the angle changes. To be able to properly fulfill customer requirements, as well designing a system that maximizes performance the decision was made to purchase an additional mounting apparatus.

![Chassisworks Eliminator II Shock Mount](image)
For simplicity of design, as well as for purpose of strength, the lower coilover mounting bracket is also used as the mounting bracket for the lower links. The decision was made based upon fulfilling the customer objective of creating a product that is easy to install. The upper plate of this mounting bracket will locate itself against the existing spring perch. This particular design uses \(\frac{1}{4}\)" plate being composed of AISI 1020 steel. Utilizing the existing U-Bolts of the original suspension system to complete the mounting process.

Figure 4 – Lower Coilover Mounting Bracket (View 1)

Figure 5 – Lower Coilover Mounting Bracket (View 1)
CALCULATIONS

Shear Stress

To appropriately choose hardware size for the coilovers, calculations were made to determine the minimal requirement in bolt diameter. Due to the nature of the design the assumption of using Grade 8 hardware was contrived. The yield strength of Grade 8 hardware is: 130,000 PSI. Design safety factor of shock was chosen, N=6.

\[ \tau_d = \frac{S_y}{2n} \]

\[ \tau_d = \frac{130,000}{12} = 10,833PSI \]

Measurements were taken in finding the rear weight of the vehicle and unsprung mass of the vehicle. The static load on each tire was determined to be 472 lbs. Solving for diameter:

\[ \sigma = \frac{F}{A} = \frac{F}{\pi \frac{D^2}{4}} \]

\[ 10,833psi = \frac{472 \text{ lbs}}{\pi \frac{D^2}{4}} \]

Minimal Bolt Diameter:

\[ D = 0.236 \text{ inches} \approx \frac{1}{4}" \]
**SPRING RATE**

To determine the appropriate spring rate for our suspension system several factors had to be considered. Per research and design choices our coilover will reside at a 90° angle (vertical) or a 73° angle. The frequency suspension also had to be chosen. Due the type of car and the applications it would be enduring, a suspension frequency of 90 cpm (cycles per minute) was assumed.

Motion Ratio (MR):

For 0°:

\[
\frac{\text{Motion Ratio}}{\text{MR}} = \frac{d_3}{d_4}
\]

\[
\text{Motion Ratio} = \frac{33.25\text{inches}}{58\text{inches}}
\]

\[
\text{Motion Ratio} = 0.573
\]

For 17°:

\[
\frac{\text{Motion Ratio}}{\text{MR}} = \frac{d_3}{d_4}
\]

\[
\text{Motion Ratio} = \frac{44.75\text{inches}}{58\text{inches}}
\]

\[
\text{Motion Ratio} = 0.772
\]

Angle Correction Factor:

For 90°:

\[
\text{Angle Correction Factor} = \sin(\text{angle of coilover})
\]

\[
\text{Angle Correction Factor} = \sin(90)
\]

\[
\text{Angle Correction Factor} = 1
\]
For 73°:

\[ \text{Angle Correction Factor} = \sin(\text{angle of coilover}) \]

\[ \text{Angle Correction Factor} = \sin(73) \]

\[ \text{Angle Correction Factor} = 0.956 \]

Rate at which the spring is acting on the tire contact point (Wheel Rate):

\[ \text{Wheel Rate} = \left( \frac{\text{Suspension Frequency}}{187.8} \right)^2 (\text{corner sprung weight}) \]

\[ \text{Wheel Rate} = \left( \frac{90 \text{ cpm}}{187.8} \right)^2 (472 \text{ lbs.}) \]

\[ \text{Wheel Rate} = 108.40 \text{ lbs/in} \]

Spring Weight

For 90°:

\[ \text{Spring Rate} = \frac{\text{Wheel Rate}}{(\text{Motion Ratio}^2)(\text{Angle Correction Factor})} \]

\[ \text{Spring Rate} = \frac{108.40 \text{ lbs/in}}{(.573^2)(1)} \]

\[ \text{Spring Rate} = 330.15 \text{ lbs/in} \]

For 73°:

\[ \text{Spring Rate} = \frac{\text{Wheel Rate}}{(\text{Motion Ratio}^2)(\text{Angle Correction Factor})} \]

\[ \text{Spring Rate} = \frac{108.40 \text{ lbs/in}}{(.772^2)(0.956)} \]

\[ \text{Spring Rate} = 190.26 \text{ lbs/in} \]
FABRICATRION

The main task for the fabrication of the lower coilover mounting brackets was to correctly position the multiple holes. The hole in the front of the bracket where the lower links mount needed to be clearance holes. Meaning the tolerance must be strict to allow for a tight fit for the shoulder bolt used for securing the lower links. Welds with sufficient penetration were also another objective during this manufacturing stage. Several coats of primer and also heavy duty paint was applied to protect the material from the environment. Below is the manufactured lower coilover mounting bracket.

Figure 6 – Lower Coilover Mounting Bracket

The lower coilover mounting bracket was then secured to rear axle utilizing the existing spring perches. Using the original spring perches reduces install complexity and also cost.
Figure 7 – Rear axle and Lower Coilover Mounting Bracket Assembly
**TESTING**

**FINITE ELEMENT ANALYSIS**
The lower coilover mounting bracket underwent SolidWorks simulation process to determine the stress and to create a Von Mises Plot. The top holes located on the top plate (Figure 19) were designated as a fixture as they will be secured to the spring perch via U-bolts. The holes running in a vertical line are where the Chassisworks Shock mount (Figure 3) will be secured, saw a force of 5,664 lbf. This value was used because of the safety factor of 12 for shock loading. The larger hole located on the side plate (Figure 18) experienced a compressive load of 4G’s. Due to the cars application, 4G’s seemed to be a safe approximation of a severe loading.

![Figure 8 –Lower Coilover Mount FEA](image)
SUSPENSION SYSTEM ANTI-SQUAT
Testing the system will be determined by the amount of squat recorded by our testing apparatus. A marker will be attached to the rear of the car, and will draw a black line on the white testing apparatus. Because the car has an automatic transmission, we will be able to accurately repeat this test. This will allow us to hold the brake and reach a specified RPM and release the brake, resulting in an almost identical launch of the car. Figure 4 shows the testing apparatus, which is 4’ x 4’ sheet of plywood attached to 2”x 4” for bracing. The car will mark the flat side which is shown in the figure.

Figure 9 - Model of Testing Apparatus
TESTING RESULTS

Figure 10 – Leaf Spring Results

Figure 11 – 4 Link and Coilver Results
<table>
<thead>
<tr>
<th></th>
<th>Squat at 1500 RPM (in.)</th>
<th>Squat at 2000 RPM (in.)</th>
<th>Squat at 2500 RPM (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf Spring</td>
<td>0.625</td>
<td>1.000</td>
<td>1.500</td>
</tr>
<tr>
<td>Coilover/4-Link</td>
<td>0.500</td>
<td>0.500</td>
<td>0.625</td>
</tr>
<tr>
<td>Percent Difference</td>
<td>25%</td>
<td>100%</td>
<td>140%</td>
</tr>
</tbody>
</table>

Figure 12 – Collected Data

![Squat of Suspension Types](image)

Figure 13 – Squat of Suspension System Comparison
CONCLUSION

The conducted research reviewed many styles of rear suspension systems along with their components. The research looked into the improvement of the original suspension system. Improving the existing components includes upgrading the bushings, shock absorbers, and spring leaves. Improvement of the original design also includes installing traction bars and a Panhard bar or Watt’s link. These modifications would improve overall handling, but from a marginal stand point. Improving the original design requires a lower cost investment and involves an easier installation. However, enhancing the original suspension system lacks in versatility, adjustability, and other key customer features.

The research directed itself into the technology of air ride suspension systems. While this type of suspension system provides many benefits towards handling and adjustability, the components that would have to be implemented are not only very expensive but also involve a complex installation process. The benefits that this system could supply would be the reduction of body roll while cornering and automatic body leveling while under various loads. These features would greatly improve the overall performance, but a compromise had to be made with installation time and budget.

Through further research it was concluded that a triangulated 4-link and coilover suspension meets the desired customer features. The triangulated 4-link and coilover suspension offers a lower cost alternative to the air ride suspension, while also providing adjustability, greater performance, lower unsprung mass due to not needing a panhard bar, and greater overall ride quality than the original design. The design of the suspension will be separated into three major categories. The first category will include the selection of the coilover shock absorber and the design of the multi-positioning mounting brackets. The second category will include the selection of bushings and the design of the links and corresponding mounting brackets. The final category will include the design of the sub frame to properly support the system.

For further detailed research, see Appendix A.
WORKS CITED
APPENDIX A – RESEARCH

LEAF SPRING RESEARCH

The 1967 Ford Mustang was equipped with a Hotchkis-type rear leaf spring suspension. This type of spring was made up of 4 layers of arc-shaped metal leafs bound together to form a single spring. The leaf springs were attached directly to the solid rear axle using U-bolts and spring plates. The front mounting eye included a rubber bushing to reduce shock and noise and to allow for slight horizontal movement. The rear end of the spring was held in a rubber-bushed compression shackle to allow flexing on lighter impacts and resistance on greater impacts. The overall suspension unit also included angle mounted shock absorbers that were attached to the spring plates. The shock absorbers were filled with viscous fluid to help reduce side sway and oscillation in the springs. (1)

Figure 14 – Leaf Spring Suspension – Courtesy of superproply.de

The leaf spring suspensions have their disadvantages. The leaf spring suspension is heavier than most alternatives, which can be an issue for racing enthusiasts. Leaf spring suspensions tend to require a significant amount of space and offer little to no adjustability. Adding horsepower to the 1967 Ford Mustang can greatly affect the performance of the stock leaf spring suspension. Increased acceleration with stock leaf springs can cause the rear axle to wrap and alter the pinion angle. Also, when cornering hard, the leaf springs can cause lateral movement and negatively affect the handling of the car. (2)

Modified leaf springs do offer advantages over other suspension upgrades. Because the leaf springs are already installed on the car, modifying the existing springs requires a lower cost of investment and involves easier installation. Some of the most popular upgrades to a stock leaf spring rear suspension include but are not limited to: adding a Panhard rod or Watt's link, swapping out the bushings, and adding traction bars. The Panhard rod and Watt's link (see figure 4) are both axle centering devices that reduce the amount of lateral movement
of the axle when cornering. Both devices can lower the car's rear roll center to improve the overall handling. Unlike the Watt's link; however, the Panhard rod can be adjusted to change the height of the roll center. (3) With a significant amount of acceleration or extreme braking, the rear axle tends to wind-up and twist the leaf springs into an "S" shape, which causes wheel hop. Traction bars (see figure 3) can be installed to "locate" the rear axle and sure the axle to the car. As a result, the axle wind-up can be reduced in extreme situations. However, the traction bars reduce the overall ride quality by adding extra weight and increasing the roll stiffness when cornering. (4)
**AIR SUSPENSION**

Air suspension on a vehicle can be described as a shock absorber that is filled with compressed air that is supplied by an onboard compressor. The compressor pumps air into each individual shock. This replaces the conventional spring, which absorbs the energy transferred from the road. Because each shock is individually filled with air, sensors can be placed so that the suspension can self-adjust in various situations allowing for maximum adaptability. Whether the vehicle is cornering or traveling at high speed, air suspension has the capability to adjust for maximum performance.

Figure 5 illustrates the basic air suspension setup for a rear axle. One of the benefits that this system offers is the ability to change the ride quality of the vehicle, even while the car is in motion. Adjusting the air suspension for ride quality can allow the car to ride smoothly or roughly. Sporting and racing applications desire a stiff suspension. With more advanced air systems the air springs can adjust for cornering, and also keeps the car more level with the road than conventional springs. Thus, in some situations the anti-roll bar can be deleted.

A contributing factor in high speed performance and fuel economy is wind resistance, also known as drag. To minimize drag, the air suspension system utilizes its adaptability by varying the ride height of the vehicle. In most cases, the underside of the vehicle is the
location in which the vehicle is least aerodynamic. Lowering the car allows for less air to pass underneath the vehicle, thus reducing the less drag on the vehicle. The air suspension lowers the vehicle at higher speeds when the vehicle encounters fewer large inconsistencies in the road. In our application for the 1967 Ford Mustang, the front suspension will also need to be converted to an air suspension for this particular feature to be utilized. (5)

Another benefit that air suspension has to offer is the ability to adapt to heavier loads in the vehicle without negatively affecting the handling of the vehicle. This feature is known as self-leveling, where the suspension increases the volume of air within a suitable camber range. Self-leveling, with the proper sensors, can also adapt to uneven roads where one side of the road is higher than the other. (5)

A drawback of the air suspension system is the overall weight compared to conventional coil-over suspensions. Air suspensions are also very complex, requiring wiring of the compressor and running air lines throughout the vehicle. Because the vehicle is suspended by air pressure, if there is a leak in the system, the car becomes useless from the lack of suspension. (5)

**COILOVERS**

**Coil Spring Over Shock**

A coilover is a suspension component short for coil spring over shock absorber. They consist of a shock absorber with a coil spring encircling it. The weight of the vehicle is supported by the coilover. More accurately by the coil spring itself. The coil spring will react to energy by extending and releasing the energy. If there wasn’t a shock absorber present, the spring would simply oscillate until it reaches equilibrium or until another force was applied. This would result in very unsatisfactory conditions and an uncontrollable vehicle. This is where the shock absorber is used for damping.

There are three kinds of coilovers; OEM-style spring-over-shock assemblies, slip-fit coilovers and full-bodied coilovers. OEM-style spring-over shock assemblies are based off of a conventional strut assembly surrounded by a coil spring. These are non-adjustable and are made of a fixed-length (depending on the model). Slip-fit coilovers consist of a hollow, threaded cylinder that sits on an existing shock perch shown below. (6)

![Figure 18 – Adjustable Coilover – Courtesy of Super Street Online](image)

These are able to be adjusted by compressing or decompressing the spring, thus directly affecting the ride height of a vehicle. The two types mentioned earlier use existing parts on a vehicle. A full-bodied coilover is an entire system. The full-bodied coilover will be the focus due to not using any existing components.
**Shock Body**

The shock is in the center of the coil spring. The upper mount of the coilover will mount to the chassis or sub-frame while the bottom mounts to the rear axle. The shock controls unwanted spring oscillation and reduces vibrations caused by the chassis and also the environment that the tire is on. As a vehicle hits a bump the springs will compress and then decompress. The energy is then transferred to the shock from their upper mounts and the piston inside of the shock absorbs the load. Hydraulic fluid is inside of the shock tube where the piston is located. The piston will exert a force to push the hydraulic fluid through the shocks valves. The kinetic energy released by the suspension system is transmitted to the shock which turns into heat energy. This heat will conclusively dissipate within the hydraulic fluid. This process can be changed or altered by variations in shocks internal components. Softer shocks will result in more spring movement while stiffer shocks will reduce spring movement.

There are two configurations of shocks offered in coilovers, Mono-tube and Twin-tube. The mono-tube structure consists of a rod and piston assembly housed within the shock tube where both compression and rebound service occurs. Twin-tube shocks consist of two cylinders. The inner cylinder is where the piston and rod move up and down. The outer cylinder is where the hydraulic fluid is held. A benefit of twin-tube over mono-tube, is the increased piston stroke capabilities. On the contrary the mono-tube style generally has a larger diameter which is beneficial in dissipating heat and displacing more fluid. This results in increased sensitivity of the shock in minimal suspension movements. (7)

![Figure 19 – Coilover Assembly – Courtesy of Super Street Online](image)
Shock Travel

Shock travel is the distance the shock is able to act before “bottoming out.” Bottoming out is when the shock runs out of travel before emitting all of the acting energy to heat. (6) A combination of shock travel and spring choice can prevent bottoming out.

Preload

Preload is the amount of force applied to the springs. This can be determined by how much the spring is compressed during static conditions. Adjusting the shock can allow more load onto the spring. Adding preload can be beneficial in increasing tire contact while cornering for example. Ride height is directly dependent on preload. (7) That is only the case if the lower mounts for the coilover are non-adjustable. Adjustable lower mounts will allow for preload adjustment while maintaining a consistent ride height (if that’s what you want).

Ridetech

Ridetech is a suspension company located in Indiana. They specialized in air ride and coilover technologies. They are a suspension manufacturing company as well as an information source. Through conversation, Ridetech has delivered unmatched opinions and support. Ridetech suggests that the mounting angle of the coilover should be maintained in between 70° to 90°. Where 90° would be considered vertical. Their associates have also stated that the shock can perform at highest ability when completely vertical. This allows the spring to see more forces which in return allows the shock to dampen those forces. Another note that Ridetech relayed was that while keeping the shock as vertical as possible also attempt to have the lower mounting position of the coilover as close to the rear tires as possible. This allows for a more stable suspension system. (8)

Conclusion

Coilovers can be dialed in to best fit a specific application by a combination of position, spring constant of the coil spring, and the shock absorber used. A correct combination of the various styles can help create a sufficient suspension system.

THE WATT’S LINK

When using a leaf spring style rear suspension the rear axle is able to move side to side. The Watt’s link absorbs much of the lateral stress that the leaves were once receiving. This allows the leaf springs to perform better by keeping the axle centered under the vehicle. With the axle being centered it will not work against the front suspension. The Watt’s link has the same response when corning left or right. (2) It’s also easily adjustable. The Watt’s link is fairly complex, and due to its complexity it is the least common devise used in centering a rear axle.

PANHARD

A Panhard rod, or also commonly referred as a track bar, is another method of centering the rear axle. This is more prevalent when compared to the Watt’s Link. A
Panhard rod is a lateral bar that runs from a frame of a vehicle to the axle. The goal is to have the rod as close to horizontal as possible. This allows the axle to stay more centered under lateral load compared an angled Panhard bar. An angled Panhard bar may be necessary depending on its application.

**FOUR-LINK**

The overall main function of a four-link system is to maintain the proper location of a rear axle under the vehicle. When a vehicle accelerates, makes a turn, or hits a bump the rear axle will constantly want to move. There are two links, one on each side of the vehicle, two upper links and two lower links. The lower links are used to keep the axle in place front to back. The upper links keep the axle from rotating and keep the pinion angle as constant as possible. Bret Voelkle of Air Ride Technologies was quoted saying “In a leaf-spring suspension, the leaves perform two functions. First, they hold the rear axle in the car. Secondly, while they are doing this, they also support the load of the vehicle. With a four-link suspension, the functions of locating the rear axle and supporting the vehicle have been separated. We like the four-link rear suspension because of its ability to properly locate the rear axle no matter how soft we want to make the spring. With a leaf-spring rear suspension, softening the spring rate can cause other problems such as side-to-side flex or axle wrap, which is when the axle tries to twist the leaves out of the vehicle.”

**TRAINGULATED FOUR LINK**

A triangulated four-link uses the upper links to keep the rear axle centered under the vehicle. This eliminates the need for a Panhard Bar or Watt’s Linkages. The upper links are placed at angle compared to the lower links. Without the need for a Panhard Bar or Watt’s Linkage, the area under the rear of the car becomes more open. This allows for other modifications for example; re-routing exhaust, fuel cells, and batteries. When contemplating a triangulated four-link one must consider “roll blind.” Roll blind is a non-linear resistance to body roll. Body roll is the load transfer of a vehicle towards the outside of a turn. When a vehicle is cornering the pivot points of all four links are resisting body roll. During this resistance a side load is placed on the pivot points. Roll blind can cause snap oversteer or an unanticipated transition from understeer to oversteer. Methods to combat roll blind is by using urethane bushings and or heim joints.

Figure 20 – Triangular 4-Link – Courtesy of Ridetech
**PARALLEL FOUR-LINK**

A parallel four link functions very similarly. The upper and lower links are parallel to another. The main difference of a parallel four-link compared to a triangulated is that a Panhard bar or Watt’s link must be used. With the upper linkages being in parallel they are unable to keep the rear axle centered under the vehicle. (8)

Figure 21 – Parallel 4-Link Utilizing Panhard – Courtesy of Ridetech
CUSTOMER SURVEY
Redesign of a 1967 Ford Mustang Rear Suspension

The Ford Mustang has been a popular choice for car enthusiasts and collectors alike throughout the cars history. This design will be focused on implementing modern technology on a classic vehicle. The rear suspension of a 1967 Mustang uses leaf springs and shock absorbers. This design entails the usage of coil-overs and a 4-link suspension system to enhance overall driving characteristics and performance.

How important is each feature of the proposed rear suspension design?
Please circle the appropriate answer.   1=Low Importance             5=High Importance

<table>
<thead>
<tr>
<th>Feature</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Investment Cost</td>
<td>1</td>
<td>2(1)</td>
<td>3(1)</td>
<td>4</td>
<td>5(1)</td>
<td>N/A</td>
</tr>
<tr>
<td>Complexity of Installation</td>
<td>1</td>
<td>2</td>
<td>3(1)</td>
<td>4(2)</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight</td>
<td>1</td>
<td>2</td>
<td>3(1)</td>
<td>4(1)</td>
<td>5(1)</td>
<td>N/A</td>
</tr>
<tr>
<td>Serviceability</td>
<td>1</td>
<td>2</td>
<td>3(2)</td>
<td>4(1)</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Adjustability</td>
<td>1</td>
<td>2</td>
<td>3(1)</td>
<td>4</td>
<td>5(2)</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4(2)</td>
<td>5(1)</td>
<td>N/A</td>
</tr>
<tr>
<td>Material</td>
<td>1</td>
<td>2(2)</td>
<td>3(1)</td>
<td>4</td>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

How adequate is the current leaf spring and shock absorber suspension system?
Please circle the appropriate answer.   1=Very Unsatisfied             5=Very Satisfied

<table>
<thead>
<tr>
<th>Feature</th>
<th>1=Very Unsatisfied</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Investment Cost</td>
<td>1=Very Unsatisfied</td>
<td>2(2)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Complexity of Installation</td>
<td>1=Very Unsatisfied</td>
<td>2(1)</td>
<td>3</td>
<td>4(1)</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight</td>
<td>1=Very Unsatisfied</td>
<td>2(1)</td>
<td>3(1)</td>
<td>4</td>
<td>5(1)</td>
<td>N/A</td>
</tr>
<tr>
<td>Serviceability</td>
<td>1=Very Unsatisfied</td>
<td>2(1)</td>
<td>3(2)</td>
<td>4</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Adjustability</td>
<td>1=Very Unsatisfied</td>
<td>2(1)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Ride Quality</td>
<td>1=Very Unsatisfied</td>
<td>2(1)</td>
<td>3</td>
<td>4(1)</td>
<td>5</td>
<td>N/A</td>
</tr>
<tr>
<td>Material</td>
<td>1=Very Unsatisfied</td>
<td>2(2)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>N/A</td>
</tr>
</tbody>
</table>

How much would you be willing to spend on this technology?

<table>
<thead>
<tr>
<th>Range</th>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,000-$1,500</td>
<td>1</td>
</tr>
<tr>
<td>$1,500-$2,000</td>
<td>2</td>
</tr>
<tr>
<td>$2,000-$2,500</td>
<td>1</td>
</tr>
<tr>
<td>$2,500-$3,000</td>
<td>1</td>
</tr>
<tr>
<td>$3,000+</td>
<td>1</td>
</tr>
</tbody>
</table>
## APPENDIX C – QUALITY FUNCTION DEPLOYMENT (QFD)

<table>
<thead>
<tr>
<th>Importance Weight</th>
<th>Engineering Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjustable linkages</td>
</tr>
<tr>
<td>1</td>
<td>13%</td>
</tr>
<tr>
<td>2</td>
<td>14%</td>
</tr>
<tr>
<td>3</td>
<td>16%</td>
</tr>
<tr>
<td>4</td>
<td>13%</td>
</tr>
<tr>
<td>5</td>
<td>18%</td>
</tr>
<tr>
<td>6</td>
<td>17%</td>
</tr>
<tr>
<td>7</td>
<td>9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.27</td>
<td>3.09</td>
<td>1.80</td>
<td>2.64</td>
<td>2.35</td>
<td>2.76</td>
<td>4.06</td>
<td>0.80</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 - QFD
### Project Details

<table>
<thead>
<tr>
<th>Date</th>
<th>Milestone</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/12/2015</td>
<td>Project Start</td>
<td></td>
</tr>
<tr>
<td>11/20/2015</td>
<td>3D Modeling</td>
<td>Existing Frame, Sub-Frame, Links, Coilovers, and Brackets</td>
</tr>
<tr>
<td>12/12/2015</td>
<td>Design Calculations</td>
<td>Calculate Link Lengths and Angles</td>
</tr>
<tr>
<td>12/15/2015</td>
<td>Bill of Materials</td>
<td></td>
</tr>
<tr>
<td>12/17/2015</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>2/9/2016</td>
<td>Reports Due</td>
<td></td>
</tr>
<tr>
<td>2/12/2016</td>
<td>Order Materials</td>
<td></td>
</tr>
<tr>
<td>3/2/2016</td>
<td>Fabrication/Machining</td>
<td></td>
</tr>
<tr>
<td>3/8/2016</td>
<td>Assembly</td>
<td></td>
</tr>
<tr>
<td>3/30/2016</td>
<td>Testing</td>
<td></td>
</tr>
<tr>
<td>4/10/2016</td>
<td>Modifications</td>
<td></td>
</tr>
<tr>
<td>4/15/2016</td>
<td>Final Testing/Final Modifications</td>
<td></td>
</tr>
<tr>
<td>4/20/2016</td>
<td>Project End - Tech Expo</td>
<td></td>
</tr>
<tr>
<td>4/25/2016</td>
<td>Presentation to Faculty</td>
<td></td>
</tr>
</tbody>
</table>
### APPENDIX E – BUDGET

<table>
<thead>
<tr>
<th>Component</th>
<th>Supplier/Vendor</th>
<th>Estimated Cost</th>
<th>Actual Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x Coilovers</td>
<td>Ridetech</td>
<td>$850.00</td>
<td>$665.00</td>
</tr>
<tr>
<td>Coilover Dropdown</td>
<td>Ridetech</td>
<td>$50.00</td>
<td>$60.00</td>
</tr>
<tr>
<td>2x Lower Coilover Offset Mount</td>
<td>Chassisworks</td>
<td>$120.00</td>
<td>$93.00</td>
</tr>
<tr>
<td>Material</td>
<td>Raw Material</td>
<td>$400.00</td>
<td>$236.50</td>
</tr>
<tr>
<td>Hardware</td>
<td>McMaster Carr</td>
<td>$280.00</td>
<td>$291.76</td>
</tr>
<tr>
<td>Machining</td>
<td>In-House</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>Welding</td>
<td>In-House</td>
<td>$20.00</td>
<td>$-</td>
</tr>
<tr>
<td>Bending</td>
<td>In-House</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>Painting</td>
<td>In-House</td>
<td>$50.00</td>
<td>$26.90</td>
</tr>
<tr>
<td>Car Transport</td>
<td>U-Haul</td>
<td>$80.00</td>
<td>$67.36</td>
</tr>
<tr>
<td><strong>TOTAL</strong></td>
<td>$1,850.00</td>
<td>$1,440.52</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 – Budget
Figure 23 – Lower Plate

Figure 24 – Side Plate
Figure 27 – Lower Coilover Mount Assembly